

Multiprotocol LPWAN dual-core module 32-bit Arm® Cortex®-M4/M0+ LoRa®, (G)FSK, (G)MSK, BPSK

LGA92 (10x10 mm)
Non-contractual images

Product status link

[STM32WL5MOC](#)

Features

Includes ST state-of-the-art patented technology.

Integration of STM32WL5JC:

- Dual-core Arm® Cortex®-M0 and Arm® Cortex®-M4 CPU
- ART Accelerator with a speed of up to 48 MHz
- 256-Kbyte flash memory
- 64- Kbyte SRAM with sub-GHz radio transceiver
- Embedded 32 MHz radio TCXO and 32 kHz RTC crystals
- All RF components for transmission and reception matching network, including default antenna filter
- STSAFE-A110 footprint
- Metal shield coating

Supporting:

- Frequencies from 864 MHz to 928 MHz
- Compatible with standardized or proprietary protocols such as LoRaWAN®, Sigfox™, or W- MBus (fully open wireless system-on-chip mioty).
- Compliant with radio frequency regulations such as ETSI EN 300 220, FCC CFR 47 Part 15, and Japanese ARIB STD- T-108
- Rx sensitivity: -123 dBm for 2-FSK (at 1.2 Kbit/s), -148 dBm for LoRa® (at 10.4 kHz, spreading factor 12)
- Transmitter high output power, programmable up to +22 dBm
- Transmitter low output power, programmable up to +15 dBm
- 37 GPIOs

Hardware configurations (2-layer PCB compatible)

- Transmitter high-output power programmable up to 22 dBm
- Transmitter low-output power programmable up to 15 dBm
- Transmitter high- or low-output power capable with external switch control

Ultra-low-power platform

- 1.8 V to 3.6 V V_{DD} voltage range
- -40°C to 85°C temperature range
- Embedded SMPS

10x10 small form factor

All packages are ECOPACK2 compliant

1 Introduction

This document provides information on STM32WL5MOC modules, such as description, functional overview, pin assignment and definition, electrical characteristics, packaging and ordering information.

For further details on the STM32WL55 module, refer to the dedicated product datasheet (DS13293) and reference manual (RM0453).

This document should be read with the multiprotocol LPWAN dual core 32-bit Arm® Cortex®-M4/M0+ LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB flash, 64KB SRAM datasheet (DS13293) and the STM32WL5x advanced Arm®-based 32-bit MCUs with sub-GHz radio solution reference manual (RM0453). Both documents are available from the STMicroelectronics website .

For information on the Arm® Cortex®-M4 and Arm® Cortex®-M0+ cores, refer respectively to the Cortex®-M4 technical reference manual and to the Cortex®-M0+ technical reference manual, available from the www.arm.com website.

For information on LoRa® modulation, refer to the Semtech website. (<https://www.semtech.com/technology/lora>).

Note:

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2 Description

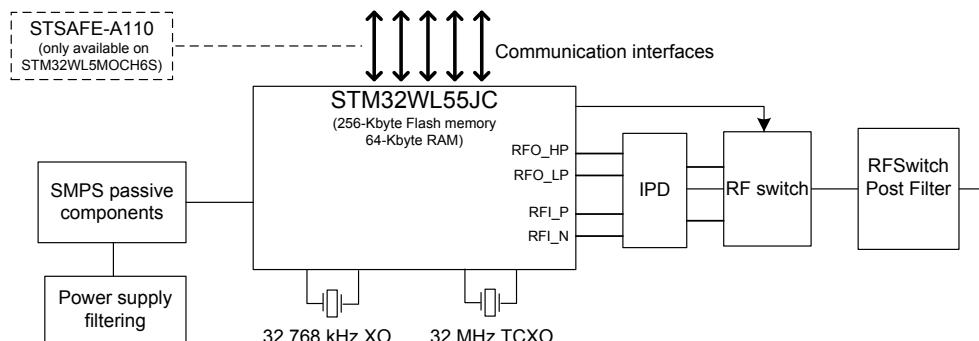

The STM32WL5MOC long-range wireless and ultralow-power certified module embeds a powerful and ultralow-power LPWAN-compliant radio solution, enabling the following modulations: LoRa®, (G)FSK, (G)MSK, and BPSK. The STM32WL5MOC does not require any RF expertise. It is the best way to speed up any development, and to reduce associated costs. This module is completely protocol stack royalty-free.

Table 1. STM32WL5MOC features and peripheral counts

Feature		STM32WL5MOC
CPU		Arm®Cortex®-M4 and Cortex®-M0
Maximum CPU frequency (MHz)		48
Flash memory density (Kbytes)		256
SRAM density (Kbytes)	SRAM1	32
	SRAM2	32
Radio	LoRa	yes
	(G)FSK	
	(G)MSK	
	BPSK	
Radio PA	Low output power (up to 15 dBm)	yes
	High output power (up to 22 dBm)	
Timer	General purpose	4
	Low power	3
	SysTick	1
Communication interface	SPI/I2S	2 (1 supporting I2S)
	I2C	3
	USART	2
	LPUART	1
Watchdog	Independent	1
	Window	1
RTC (with wake-up counter)		1
DMA (7 channels)		2
Mailbox and semaphores		1
Security	AES 256 bits	1
	RNG	1
	PKA	1
	PCROP, RDP, WRP	1
	CRC	1
	64-bit UID compliant with IEEE 802-2001 standard	1
	96-bit die ID	1
	Storage and management of secure keys	1
	Secure sub-GHz MAC layer	1

Feature	STM32WL5MOC
Security	Secure firmware update
	Secure firmware install
Tamper pins	3
Wake-up pins	3
GPIOs	37 (35 on STM32WL5MOCH6S)
ADC (number of channels, ext + int)	1 (12+4)
DAC (number of channels)	1 (1)
Internal VREFBUF	Yes
Analog comparator	2
Operating voltage	1.8 to 3.6 V
Ambient operating temperature	-40 to +85 °C
Package	LGA92 (10x10 mm)
STSAFE-A110	Available on STM32WL5MOCH6S part numbers. Not available on STM32WL5MOCH6 part numbers.

Figure 1. STM32WL5MOC block diagram

DT69796V2

3 Functional overview

The module is an SIP LGA92 package (system in package land grid array) that integrates the STM32WL55JC microcontroller (MCU).

The STM32WL5MOC includes the following components:

- LSE 32 kHz XO (crystal oscillator).
- HSE 32 MHz TCXO (temperature compensated crystal oscillator).
- An IPD (integrated passive device), integrating matching network for transmission output to matching network.
- Passive components for SMPS.
- An antenna matching.
- STSAFE-A110 footprint.

Note: For more information on the STSAFE option, contact the local STMicroelectronics sales office.

3.1 Power supply

Power supply requirements are identical to a regular STM32WL55 MCU. Refer to the product datasheet (DS13293).

Filtering capacitors on power-supply pins and components for the SMPS are already integrated into the module.

3.2 SMPS

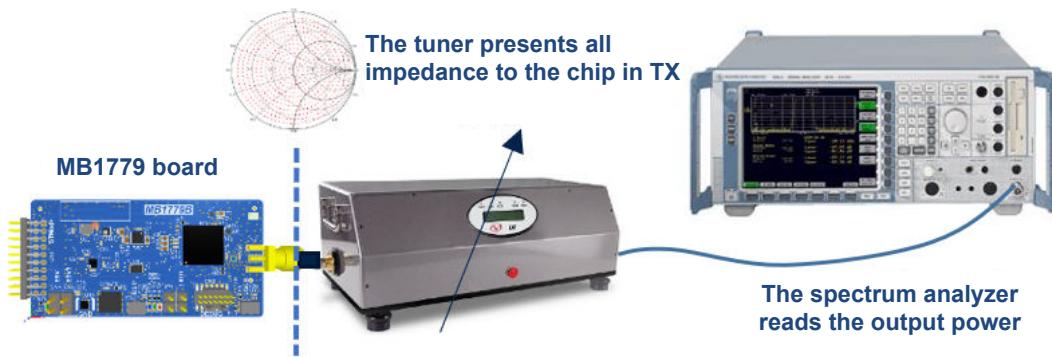
The SMPS passive components are fitted in the module (see the reference manual and application notes for recommendations on how to use the SMPS).

3.3 Clocks

As the module integrates a 32.768 kHz crystal for LSE, and a 32 MHz crystal for HSE, it is not possible to use any clock in bypass mode.

- The LSE must be used in high-driving capability: `RCC_BDCR_LSEDRV[1:0] = 11` (see the reference manual for more details).
- The HSE does not need any tuning or calibration as a TCXO is used.
- LSCO and MCO outputs are available.

3.4 RF antenna impact

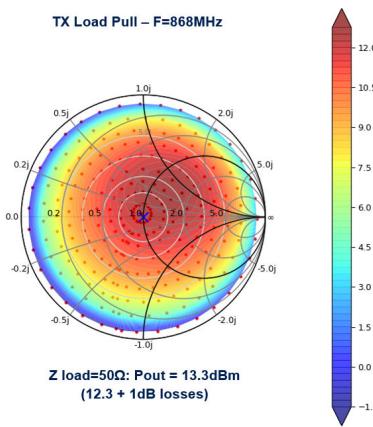

The module can be connected to different antenna types. However, depending on the impedance seen by the module, the RF performance (Tx or Rx) may be impacted.

This section details the limitations obtained by load pull and source pull measurements on the MB1779 (CEB) board.

3.4.1 Impact of the antenna choice on the Tx performances

Load pull setup

Figure 2. Load pull setup

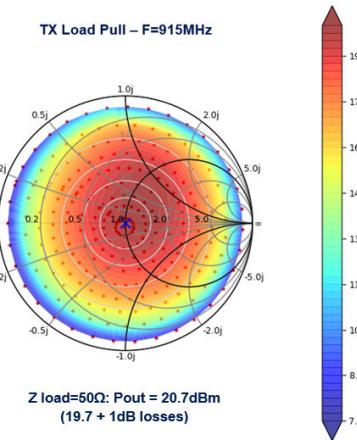


DT71849V1

Note: Loss coming from both the tuner and the cable is estimated at 1dB.

Limitations obtained in Low power mode at 868 MHz

Figure 3. Limitations in Low power mode at 868 MHz

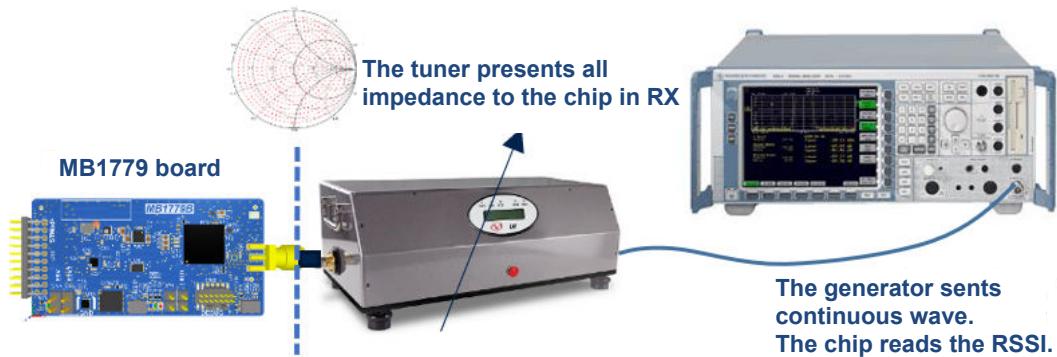


DT71850V1

- To keep an output power > 13 dBm, the TOS presented to the module should be ≤ 2 .
- The maximum output power (13.7 dBm) is obtained for $Z_{load} = 62 + j \times 30$.

Limitations obtained in High power mode at 915 MHz:

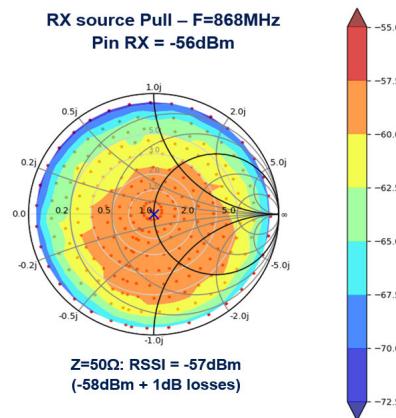
Figure 4. Limitations in High power mode at 915 MHz


- To keep an output power > 20 dBm, the TOS presented to the module should be ≤ 2 .
- Max output power 21 dBm is obtained for Z load = $63 + j \times 22$.

3.4.2

Impact of the antenna choice on the Rx performances

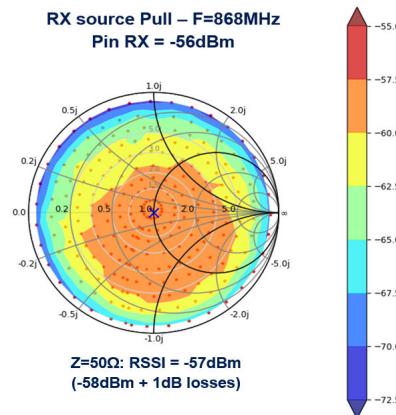
Source pull setup


Figure 5. Source pull setup

Note: Loss coming from both the tuner and the cable is estimated at 1 dB.

Limitations obtained at 868 MHz

Figure 6. Limitations obtained at 868 MHz



DT71855V1

- To keep a correct RSSI, the TOS presented to the module should be ≤ 2 .

Limitations obtained at 915 MHz

Figure 7. Limitations obtained at 915 MHz

DT71855V1

- To keep a correct RSSI, the TOS presented to the module should be ≤ 2 .
- To keep good RF performances for both Tx and Rx, the TOS of the antenna should be ≤ 2 .

3.5 Hardware configurations

3.5.1 Solder bridge vs DC switch configuration

Figure 8. Solder bridge configuration

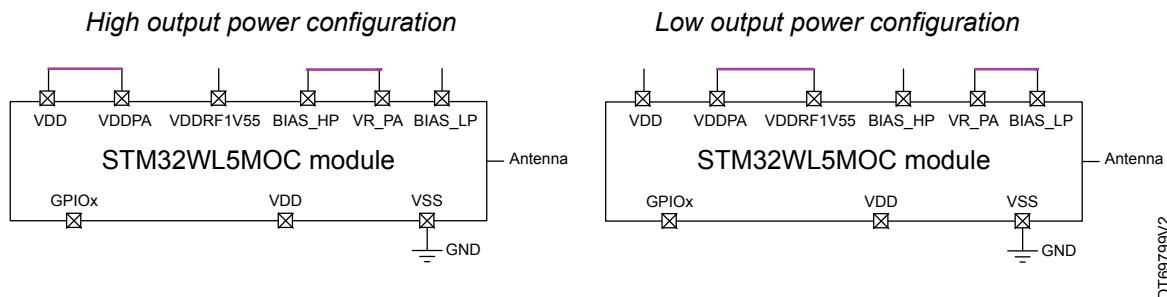
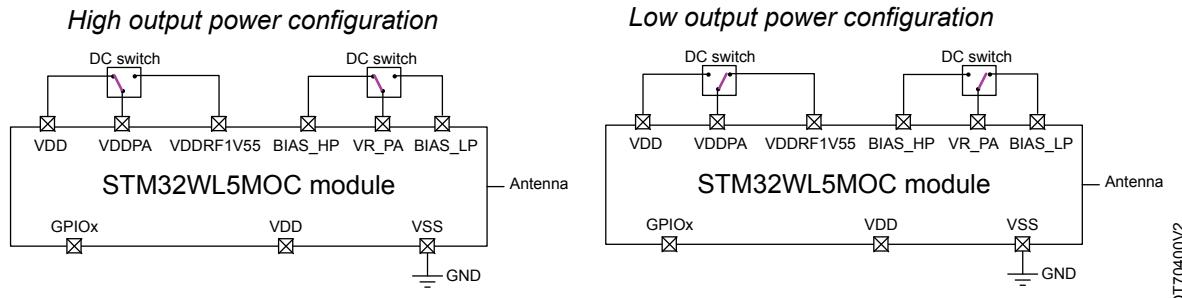
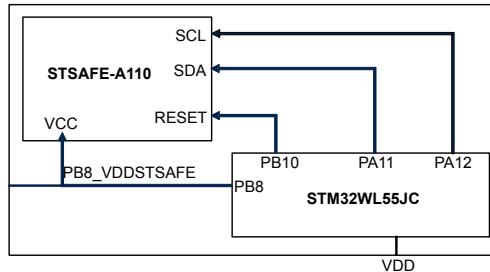



Figure 9. DC switch configuration

3.5.2 STSAFE supply

STSAFE is integrated in STM32WL5MOCH6S. To optimize power consumption, in particular in low-power mode, the GPIO PB8 controls the STSAFE supply.


When STSAFE needs to be used, GPIO PB8 must then be set up in an output configuration, and forced to '1'. STSAFE can sink up to 21 mA of power consumption. Using only PB8 as a supply limits VDD to a voltage ranging from 2.6 V to 3.6 V. See the schema "STSAFE supplied by PB8 (VDD guaranteed above 2.6 V)".

To support the full voltage range (1.8 V to 3.6 V), different options are available:

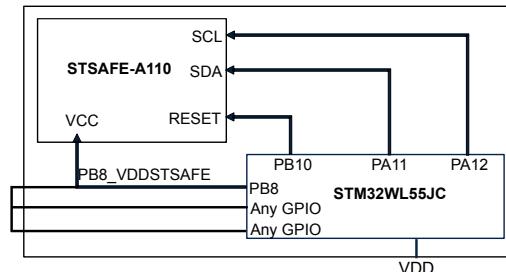
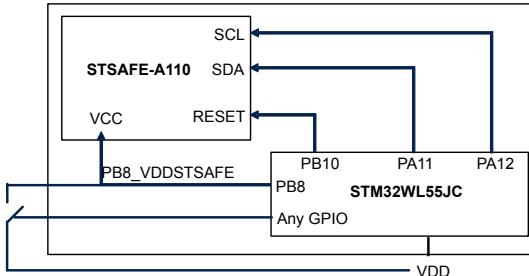
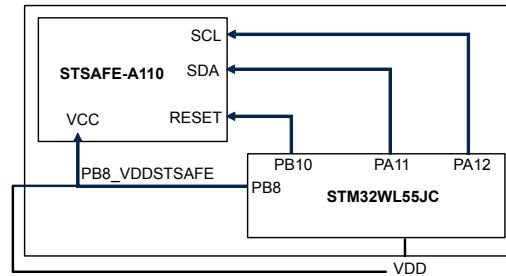

- Connecting several GPIOs to PB8 externally, and using them as supply. See the schema "STSAFE supplied by PB8 and additional GPIOs" in [Figure 10. STSAFE configurations](#).
- Adding an external switch-on VDD, controlled by a GPIO. See the schema "STSAFE supplied by on-board VDD, switchable" in [Figure 10. STSAFE configurations](#).
- Connecting VDD to PB8, and configuring PB8 in Output forced to '1'. See the schema "STSAFE supplied by on-board VDD" in [Figure 10. STSAFE configurations](#).

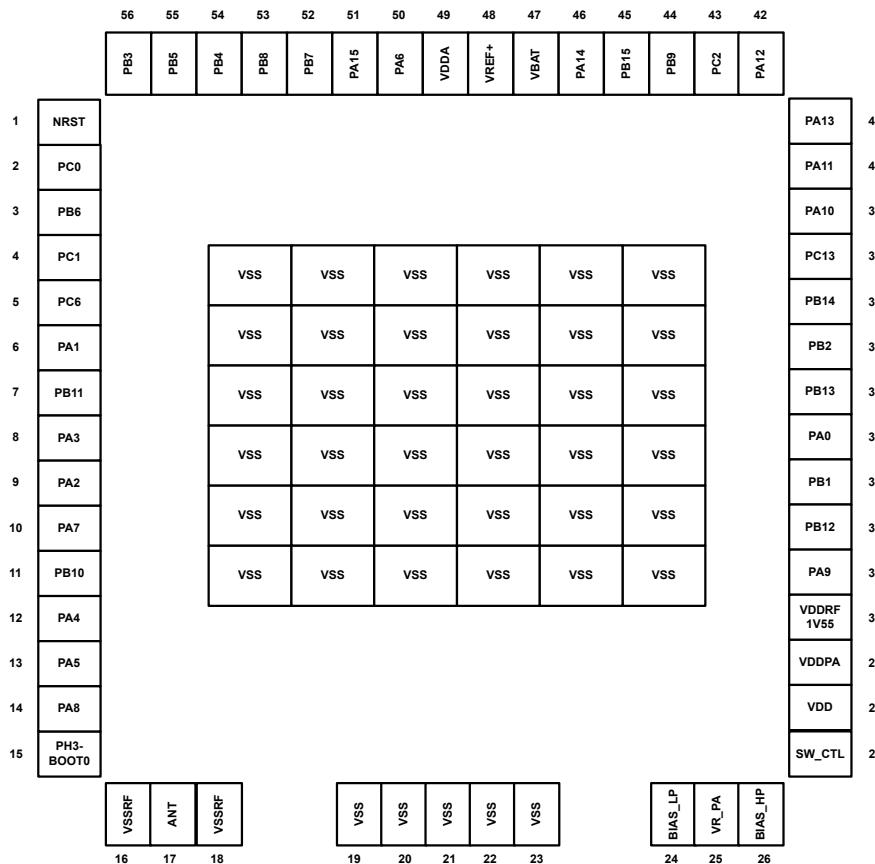
Figure 10. STSAFE configurations


STSAFE supplied by PB8 (VDD guaranteed above 2.6V)


STSAFE supplied by PB8 and additional GPIOs

STSAFE supplied by on-board VDD, switchable

STSAFE supplied by on-board VDD



DT71819V1

4 Pinouts/ballouts, pin description, and alternate functions

4.1 Pinout/ballout schematics

Figure 11. SIP LGA92 pinout

DT69798V1

1. Package top view.

4.2 Pin description

Table 2. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition
Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name	
Pin type	S	Supply pin
	I	Input only pin
	I/O	Input/output pin
	O	Output only pin
I/O structure	FT	5 V-tolerant I/O
	RF	Radio RF pin
Option for FT I/Os		

Name		Abbreviation		Definition			
I/O structure		<u>f</u>		I/O, Fm+ capable			
		<u>a</u>		I/O, with analog switch function supplied by V_{DDA}			
Notes		Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.					
Pin functions	Alternate functions	Functions selected through <code>GPIOx_AFR</code> registers					
	Additional functions	Functions directly selected/enabled through peripheral registers					

Table 3. STM32WL5MOC pin definition

Pin number	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	NRST	I/O	FT	-	-	-
2	PC0	I/O	FT_f	-	LPTIM1_IN1, I2C3_SCL, LPUART1_RX, LPTIM2_IN1, CM4_EVENTOUT	-
3	PB6	I/O	FT_f	-	LPTIM1_ETR, I2C1_SCL, USART1_TX, TIM16_CH1N, CM4_EVENTOUT	-
4	PC1	I/O	FT_f	-	LPTIM1_OUT, SPI2_MOSI/I2S2_SD, I2C3_SDA, LPUART1_TX, CM4_EVENTOUT	-
5	PC6	I/O	FT	-	I2S2_MCK, CM4_EVENTOUT	-
6	PA1	I/O	FT_a	-	TIM2_CH2, LPTIM3_OUT, I2C1_SMBA, SPI1_SCK, USART2 RTS, LPUART1 RTS, DEBUG_PWR_REGLP2S, CM4_EVENTOUT	-
7	PB11	I/O	FT_f	-	TIM2_CH4, I2C3_SDA, LPUART1_TX, COMP2_OUT, CM4_EVENTOUT	-
8	PA3	I/O	FT_a	-	TIM2_CH4, I2S2_MCK, USART2_RX, LPUART1_RX, CM4_EVENTOUT	-
9	PA2	I/O	FT_a	-	LSCO, TIM2_CH3, USART2_TX, LPUART1_TX, COMP2_OUT, DEBUG_PWR_LDORDY, CM4_EVENTOUT	LSCO
10	PA7	I/O	FT_fa	-	TIM1_CH1N, I2C3_SCL, SPI1_MOSI, COMP2_OUT, DEBUG_SUBGHZSPI_MOSIOUT, TIM17_CH1, CM4_EVENTOUT	-
11	PB10 ⁽¹⁾	I/O	FT_f	-	TIM2_CH3, I2C3_SCL, SPI2_SCK/I2S2_CK, LPUART1_RX, COMP1_OUT, CM4_EVENTOUT	-
12	PA4	I/O	FT	-	RTC_OUT2, LPTIM1_OUT, SPI1_NSS, USART2_CK, DEBUG_SUBGHZSPI_NSSOUT, LPTIM2_OUT, CM4_EVENTOUT	-
13	PA5	I/O	FT	-	TIM2_CH1, TIM2_ETR, SPI2_MISO, SPI1_SCK, DEBUG_SUBGHZSPI_SCKOUT, LPTIM2_ETR, CM4_EVENTOUT	-
14	PA8	I-O	FT_a	-	MCO, TIM1_CH1, SPI2_SCK/I2S2_CK, USART1_CK, LPTIM2_OUT, CM4_EVENTOUT	-
15	PH3-BOOT0	I/O	FT	-	CM4_EVENTOUT	BOOT0
16	VSSRF	S	-	-	-	-
17	ANT	I/O	RF	-	-	-
18	VSSRF	S	-	-	-	-
19	VSS	S	-	-	-	-
20	VSS	S	-	-	-	-
21	VSS	S	-	-	-	-

Pin number	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
22	VSS	S	-	-	-	-
23	VSS	S	-	-	-	-
24	BIAS_LP	O	RF	-	-	-
25	VR_PA	S	RF	-	-	-
26	BIAS_HP	O	RF	-	-	-
27	SW_CTL	I/O	FT	-	CM4_EVENTOUT	-
28	VDD	S	-	-	-	-
29	VDDPA	S	RF	-	-	-
30	VDDRF1V55	S	RF	-	-	-
31	PA9	I/O	FT_fa	-	TIM1_CH2, SPI2 NSS/I2S2_WS, I2C1_SCL, SPI2_SCK/I2S2_CK, USART1_TX, CM4_EVENTOUT	-
32	PB12	I/O	FT	-	TIM1_BKIN, I2C3_SMBA, SPI2 NSS/I2S2_WS, LPUART1_RTS, CM4_EVENTOUT	-
33	PB1	I/O	FT_a	-	LPUART1_RTS_DE, LPTIM2_IN1, CM4_EVENTOUT	COMP2_INP, ADC_IN5
34	PA0	I/O	FT_a	-	TIM2_CH1, I2C3_SMBA, I2S_CKIN, USART2_CTS, COMP1_OUT, DEBUG_PWR_REGLP1S, TIM2_ETR, CM4_EVENTOUT	PVD_IN, TAMP_IN2/ WKUP1
35	PB13	I/O	FT_fa	-	TIM1_CH1N, I2C3_SCL, SPI2_SCK/I2S2_CK, LPUART1_CTS, CM4_EVENTOUT	ADC_IN0
36	PB2	I/O	FT_a	-	LPTIM1_OUT, I2C3_SMBA, SPI1 NSS, DEBUG_RF_SMPSRDY, CM4_EVENTOUT	COMP1_INP, COMP2_INM, ADC_IN4
37	PB14	I/O	FT_fa	-	IM1_CH2N, I2S2_MCK, I2C3_SDA, SPI2_MISO, CM4_EVENTOUT	ADC_IN1
38	PC13	I/O	FT	-	CM4_EVENTOUT	TAMP_IN1/ RTC_OUT1/ RTC_TS/WKUP2
39	PA10	I/O	FT_fa	-	RTC_REFIN, TIM1_CH3, I2C1_SDA, SPI2_MOSI/ I2S2_SD, USART1_RX, DEBUG_RF_HSE32RDY, TIM17_BKIN, CM4_EVENTOUT	COMP1_INM, COMP2_INM, DAC_OUT1, ADC_IN6
40	PA11 ⁽²⁾	I/O	FT_fa	-	TIM1_CH4, TIM1_BKIN2, LPTIM3_ETR, I2C2_SDA, SPI1_MISO, USART1_CTS, DEBUG_RF_NRESET, CM4_EVENTOUT	COMP1_INM, COMP2_INM, ADC_IN7
41	PA13	I/O	FT_a	-	JTMS-SWDIO, I2C2_SMBA, IR_OUT, CM4_EVENTOUT	ADC_IN9
42	PE12 ⁽³⁾	I/O	FT_fa	-	TIM1_ETR, LPTIM3_IN1, I2C2_SCL, SPI1_MOSI, RF_BUSY, USART1_RTS, CM4_EVENTOUT	ADC_IN8
43	PC2	I/O	FT	-	LPTIM1_IN2, SPI2_MISO, CM4_EVENTOUT	-
44	PB9	I/O	FT_f	-	TIM1_CH3N, I2C1_SDA, SPI2 NSS/I2S2_WS, IR_OUT, TIM17_CH1, CM4_EVENTOUT	-
45	PB15	I/O	FT_f	-	TIM1_CH3N, I2C2_SCL, SPI2_MOSI/I2S2_SD, CM4_EVENTOUT	-
46	PA14	I/O	FT_a	-	JTCK-SWCLK, LPTIM1_OUT, I2C1_SMBA, CM4_EVENTOUT	ADC_IN10
47	VBAT	S	-	-	-	-

Pin number	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
SIPLGA92						
48	VREF+	S	-	-	-	-
49	VDDA	S	-	-	-	-
50	PA6	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI1_MISO, LPUART1_CTS, DEBUG_SUBGHZSPI_MISOOUT, TIM16_CH1, CM4_EVENTOUT	-
51	PA15	I/O	FT_fa	-	JTDI, TIM2_CH1, TIM2_ETR, I2C2_SDA, SPI1_NSS, CM4_EVENTOUT	COMP1_INM, COMP2_INP, ADC_IN11
52	PB7	I/O	FT_f	-	LPTIM1_IN2, TIM1_BKIN, I2C1_SDA, USART1_RX, TIM17_CH1N, CM4_EVENTOUT	-
53	PB8 ⁽⁴⁾	I/O	FT_f	-	TIM1_CH2N, I2C1_SCL, RF_IRQ2, TIM16_CH1, CM4_EVENTOUT	-
54	PB4	I/O	FT_fa	-	NJTRST, I2C3_SDA, SPI1_MISO, USART1_CTS, DEBUG_RF_LDORDY, TIM17_BKIN, CM4_EVENTOUT	COMP1_INP, COMP2_INP, ADC_IN3
55	PB5	I/O	FT_a	-	LPTIM1_IN1, I2C1_SMBA, SPI1_MOSI, RF_IRQ1, USART1_CK, COMP2_OUT, TIM16_BKIN, CM4_EVENTOUT	-
56	PB3	I/O	FT_a	-	JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, RF_IRQ0, USART1_RTS, DEBUG_RF_DTB1, CM4_EVENTOUT	COMP1_INM, COMP2_INM, ADC_IN2, TAMP_IN3/WKUP3
57	VSS	S	-	-	-	-
58	VSS	S	-	-	-	-
59	VSS	S	-	-	-	-
60	VSS	S	-	-	-	-
61	VSS	S	-	-	-	-
62	VSS	S	-	-	-	-
63	VSS	S	-	-	-	-
64	VSS	S	-	-	-	-
65	VSS	S	-	-	-	-
66	VSS	S	-	-	-	-
67	VSS	S	-	-	-	-
68	VSS	S	-	-	-	-
69	VSS	S	-	-	-	-
70	VSS	S	-	-	-	-
71	VSS	S	-	-	-	-
72	VSS	S	-	-	-	-
73	VSS	S	-	-	-	-
74	VSS	S	-	-	-	-
75	VSS	S	-	-	-	-
76	VSS	S	-	-	-	-
77	VSS	S	-	-	-	-
78	VSS	S	-	-	-	-

Pin number	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
79	VSS	S	-	-	-	-
80	VSS	S	-	-	-	-
81	VSS	S	-	-	-	-
82	VSS	S	-	-	-	-
83	VSS	S	-	-	-	-
84	VSS	S	-	-	-	-
85	VSS	S	-	-	-	-
86	VSS	S	-	-	-	-
87	VSS	S	-	-	-	-
88	VSS	S	-	-	-	-
89	VSS	S	-	-	-	-
90	VSS	S	-	-	-	-
91	VSS	S	-	-	-	-
92	VSS	S	-	-	-	-

1. For STM32WL5MOCH6S, this GPIO controls the STSAFE reset, which can be controlled by your own FW
2. It must be used only as I2C2_SCL on STM32WL5MOCH6S.
3. It must be used only as I2C2_SCL on STM32WL5MOCH6S.
4. It must be used only as STSAFE supply on STM32WL5MOCH6S.

4.3 Alternate functions

Table 4. Alternate function AF0 to AF7

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TM2	SPI2/ TIM1/LPTIM3	I2C1/I2C2/ I2C3	SPI1/SPI2S2	RF	USART1/ USART2	
Port A	PA0	-	TIM2_CH1	-	-	I2C3_SMBA	I2S_CKIN	-	USART2_CTS
	PA1	-	TIM2_CH2	-	LPTIM3_OUT	I2C1_SMBA	SPI1_SCK	-	USART2 RTS
	PA2	LSCO	TIM2_CH3	-	-	-	-	-	USART2_TX
	PA3	-	TIM2_CH4	-	-	-	I2S2_MCK	-	USART2_RX
	PA4	RTC_OUT2	LPTIM1_OUT	-	-	-	SPI1_NSS	-	USART2_CX
	PA5	-	TIM2_CH1	TIM2_ETR	SPI2_MISO	-	SPI1_SCK	-	-
	PA6	-	TIM1_BKIN	-	-	I2C2_SMBA	SPI1_MISO	-	-
	PA7	-	TIM1_CH1N	-	-	I2C3_SCL	SPI1_MOSI	-	-
	PA8	MCO	TIM1_CH1	-	-	-	SPI2_SCK/ I2S2_CK	-	USART1_CK
	PA9	-	TIM1_CH2	-	SPI2_NSS/ I2S2_WS	I2C1_SCL	SPI2_SCK/ I2S2_CK	-	USART1_TX
	PA10	RTC_REFIN	TIM1_CH3	-	-	I2C1_SDA	SPI2_MOSI/ I2S2_SD	-	USART1_RX
	PA11	-	TIM1_CH4	TIM1_BKIN2	LPTIM3_ETR	I2C2_SDA	SPI1_MISO	-	USART1_CTS
	PA12	-	TIM1_ETR	-	LPTIM3_IN1	I2C2_SCL	SPI1_MOSI	RF_BUSY	USART1_RTS

Port		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
		SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TM2	SPI2/ TIM1/LPTIM3	I2C1/I2C2/ I2C3	SPI1/SPI2S2	RF	USART1/ USART2
Port A	PA13	JTMS/ SWDIO	-	-	-	I2C2_SMBA	-	-	-
	PA14	JTCK/ SWCLK	LPTIM1_OUT	-	-	I2C1_SMBA	-	-	-
	PA15	JTDI	TIM2_CH1	TIM2_ETR	-	I2C1_SDA	SPI1_NSS	-	-
Port B	PB1	-	-	-	-	-	-	-	-
	PB2	-	LPTIM1_OUT	-	-	I2C3_SMBA	SPI1_NSS	-	-
	PB3	JTDO/ TRACESWO	TIM2_CH2	-	-	-	SPI1_SCK	RF_IRQ0	USART1_RTS
	PB4	NJTRST	-	-	-	I2C3_SDA	SPI1_MISO	-	USART1_CTS
	PB5	-	LPTIM1_IN1	-	-	I2C1_SMBA	SPI1_MOSI	RF_IRQ1	USART1_CK
	PB6	-	LPTIM1_ETR	-	-	I2C1_SCL	-	-	USART1_TX
	PB7	-	LPTIM1_IN2	-	TIM1_BKIN	I2C1_SDA	-	-	USART1_RX
	PB8	-	TIM1_CH2N	-	-	I2C1_SCL	-	RF_IRQ2	-
	PB9	-	TIM1_CH3N	-	-	I2C1_SDA	SPI2_NSS/ I2S2_WS	-	-
	PB10	-	TIM2_CH3	-	-	I2C3_SCL	SPI2_SCK/ I2S2_CK	-	-
	PB11	-	TIM2_CH4	-	-	I2C3_SDA	-	-	-
	PB12	-	TIM1_BKIN	-	TIM1_BKIN	I2C3_SMBA	SPI2_NSS/ I2S2_WS	-	-
	PB13	-	TIM1_CH1N	-	-	I2C3_SCL	SPI2_SCK/ I2S2_CK	-	-
	PB14	-	TIM1_CH2N	-	I2S2_MCK	I2C3_SDA	SPI2_MISO	-	-
	PB15	-	TIM1_CH3N	-	-	I2C2_SCL	SPI2_MOSI/ I2S2_SD	-	-
Port C	PC0	-	LPTIM1_IN1	-	-	I2C3_SCL	-	-	-
	PC1	-	LPTIM1_OUT	-	SPI2_MOSI/ I2S2_SD	I2C3_SDA	-	-	-
	PC2	-	LPTIM1_IN2	-	-	-	SPI2_MISO	-	-
	PC6	-	-	-	-	-	I2S2_MCK	-	-
	PC13	-	-	-	-	-	-	-	-
Port H	PH3	-	-	-	-	-	-	-	-

Table 5. Alternate function AF8 to AF15

See Table 4 for AF0 to AF7.

Port	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	LPUART1	-	-	-	COMP1/ COMP2/TIM1	DEBUG	TIM2/TIM16/ TIM17/LPTIM2	EVENOUT
Port A	PA0	-	-	-	COMP1_OUT	DEBUG_PWR_RE GLP1S	TIM2_ETR	
	PA1	LPUART1_RTS	-	-	-	DEBUG_PWR_RE GLP2S	-	
	PA2	LPUART1_TX	-	-	COMP2_OUT	DEBUG_PWR_LD ORDY	-	
	PA3	LPUART1_RX	-	-	-	-	-	
	PA4	-	-	-	-	DEBUG_SUBGHZ SPI_NSSOUT	LPTIM2_OUT	
	PA5	-	-	-	-	DEBUG_SUBGHZ SPI_SCKOUT	LPTIM2_ETR	
	PA6	LPUART1_CTS	-	-	TIM1_BKIN	DEBUG_SUBGHZ SPI_MISOOUT	TIM16_CH1	
	PA7	-	-	-	COMP2_OUT	DEBUG_SUBGHZ SPI_MOSIOUT	TIM17_CH1	
	PA8	-	-	-	-	-	LPTIM2_OUT	
	PA9	-	-	-	-	-	-	
	PA10	-	-	-	-	DEBUG_RF_HSE3 2RDY	TIM17_BKIN	
	PA11	-	-	-	TIM1_BKIN2	DEBUG_RF_NRE SET	-	
	PA12	-	-	-	-	-	-	
	PA13	IR_OUT	-	-	-	-	-	
	PA14	-	-	-	-	-	-	
	PA15	-	-	-	-	-	-	
Port B	PB1	LPUART1_ RTS_DE	-	-	-	-	-	LPTIM2_IN1
	PB2	-	-	-	-	DEBUG_RF_SMP SRDY	-	
	PB3	-	-	-	-	DEBUG_RF_DTB1	-	
	PB4	-	-	-	-	DEBUG_RF_LDO RDY	TIM17_BKIN	
	PB5	-	-	-	COMP2_OUT	-	TIM16_BKIN	
	PB6	-	-	-	-	-	TIM16_CH1N	
	PB7	-	-	-	-	-	TIM17_CH1N	
	PB8	-	-	-	-	-	TIM16_CH1	
	PB9	IR_OUT	-	-	-	-	-	TIM17_CH1
	PB10	LPUART1_RX	-	-	COMP1_OUT	-	-	
	PB11	LPUART1_TX	-	-	COMP2_OUT	-	-	
	PB12	LPUART1_RTS	-	-	-	-	-	
	PB13	LPUART1_CTS	-	-	-	-	-	
	PB14	-	-	-	-	-	-	
	PB15	-	-	-	-	-	-	

CM4_EVENTOUT

Port		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
		LPUART1	-	-	-	COMP1/ COMP2/TIM1	DEBUG	TIM2/TIM16/ TIM17/LPTIM2	EVENOUT
Port C	PC0	LPUART1_RX	-	-	-	-	-	LPTIM2_IN1	CM4_EVENTOUT
	PC1	LPUART1_TX	-	-	-	-	-	-	
	PC2	-	-	-	-	-	-	-	
	PC6	-	-	-	-	-	-	-	
	PC13	-	-	-	-	-	-	-	
Port H	PH3	-	-	-	-	-	-	-	

5 Electrical characteristics

5.1 Operating conditions

Table 6. STM32WL5MOC operating conditions

Parameter	Min.	Typ.	Max.	Unit
V_{DD}	1.71	3.3	3.6	V
Operating ambient temperature range	-40	-	85	°C
Storage temperature range	-40	-	125	°C

5.2 Power consumption

Refer to Multiprotocol LPWAN dual core 32-bit Arm® Cortex®- M4/M0+ LoRa® (G)FSK, (G)MSK, BPSK (DS13293) for more details.

The power consumption is identical to the STM32WL55xx. Refer to Multiprotocol LPWAN dual core 32-bit Arm® Cortex®- M4/M0+ LoRa® (G)FSK, (G)MSK, BPSK (DS13293) for all power consumption figures, except for tables *Sub-GHz radio power consumption* and *Sub-GHz radio power consumption in transmit mode*, that you can find below. This power consumption modification takes into account the presence of a 32MHz TCXO inside the module.

Table 7. Sub-GHz radio power consumption

Symbol	Mode	Conditions	Min	Typ	Max	Unit
I_{DD}	Deep-Sleep mode (Sleep with cold start)	All blocks off	-	50	-	nA
	Sleep mode (with warm start)	Configuration retained	-	140	-	
		Configuration retained + RC64k	-	810	-	
	Sleep, LDO mode	LDO, band-gap, RC 13 MHz on	HSE32 off	414	-	μA
			HSE32 on	564	-	
	Sleep, SMPS mode	Band-gap, RC 13 MHz on, SMPS 40 mA max	HSE32 off	700	-	
			HSE32 on	950	-	
	Standby mode (RC 13 MHz on)	RC 13 MHz on, HSE32 off	-	0.7	-	mA
	Standby mode (HSE32)	SMPS mode	40 mA max settings	2.55	-	
		LDO mode	-	2.49	-	
	Synthesizer mode	SMPS mode used with 40 mA drive capability	-	4.16	-	mA
		LDO mode	-	5.55	-	
	Receive mode, SMPS mode used	SMPS 40 mA max	FSK 4.8 Kbit/s	5.97	-	mA
			LoRa 125 kHz	6.32	-	
			Rx boosted, FSK 4.8 Kbit/s	6.62	-	
			RX boosted, LoRa 125 kHz	6.96	-	
	Receive mode, LDO mode used	FSK 4.8 Kbit/s	-	9.68	-	mA
		LoRa 125 kHz	-	10.4	-	
		Rx boosted	FSK 4.8 Kbit/s	11.02	-	
			LoRa 125 kHz	11.72	-	

1. Cold start is equivalent to device at POR or when the device wakes up from Sleep mode with all blocks off.
2. Only Sub-GHz radio power consumption
3. Warm start only happens when the device wakes up from Sleep mode with its configuration retained
4. System in Stop 0 mode range 2

Table 8. Sub-GHz radio power consumption and effective transmitted output power in [868 to 915]MHz band

Symbol	Frequency band (MHz)	PA match (conditions)	Programmed power output	Measured power output			
				Typ (LDD)	Unit	Typ	Unit
<	868 to 915	Low power	+10 dBm, $V_{DDRF} = 3.3$ V	20	mA	9.2	dBm
			+10 dBm, $V_{DDRF} = 1.8$ V	35		9.1	
			+15 dBm, $V_{DDRF} = 3.3$ V	29		13.7	
			+15 dBm, $V_{DDRF} = 1.8$ V	52		13.4	
		High power	+22 dBm, $V_{DDRF} = 3.3$ V	111		20.3	
			+22 dBm, $V_{DDRF} = 1.8$ V	80		16	
			+20 dBm, $V_{DDRF} = 3.3$ V	103		18.6	
			+20 dBm, $V_{DDRF} = 1.8$ V	80		16	

1. These power outputs correspond to the settings programmed in the device. Depending on the board, up to 2 dB less than the setting are expected.

5.3 32 MHz TCXO clock characteristics

The embedded 32 MHz TCXO clock has the following characteristics:

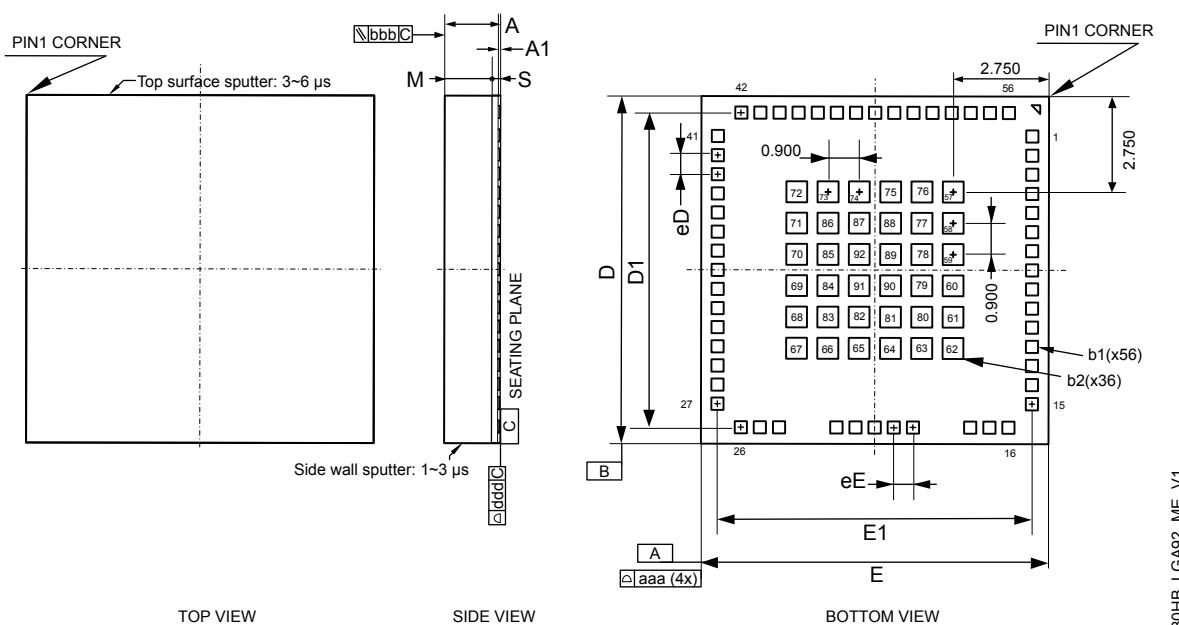
Table 9. STM32WL5M TCXO characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Fnom	Output frequency		-	32	-	MHz
Ftol	Frequency accuracy	Initial	-2.0	-	+2.0	ppm
		Over temperature [-40:+85]	-1.0	-	+1.0	
		Aging over 10 years	-10	-	+10	

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of **ECOPACK** packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 Device marking


Refer to the technical note "Reference device marking schematics for STM32 microcontrollers and microprocessors" (TN1433) available on www.st.com, for the location of pin 1 / ball A1 as well as the location and orientation of the marking areas versus pin 1 / ball A1.

Parts marked as "ES", "E" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.2 LGA92 package information

This LGA is a 92 lead, 10 x 10 mm, 1.608 mm pitch, lead grid array package.

Figure 12. LGA92 - Outline

1. Drawing is not to scale.

Table 10. LGA92 - Mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Typ	Max	Min	Typ	Max
A	1.818±0.060			0.0716±0.0024		
A1	0.030±0.020			0.0012±0.0008		
b1 ⁽²⁾	0.350x0.350			0.0138x0.0138		
b2 ⁽³⁾	0.600x0.600			0.0236x0.0236		
D	9.900	10.000	10.100	0.3898	0.3937	0.3976
D1	9.050			0.3563		
eD	0.550			0.0216		
E	9.900	10.000	10.100	0.3898	0.3937	0.3976
E1	9.050			0.3563		
eE	0.550			0.0216		
M	1.540			0.0606		
S	0.248			0.0098		
n	92					
aaa	0.100			0.0039		
bbb	0.100			0.0039		
ddd	0.100			0.0039		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Peripheral pad.

3. Inner pad.

6.3

Thermal characteristics

The thermal characteristics of the STM32WL5MOC are defined below and the constant values are given in Table 11 where:

- Θ_{JA} is the junction-to-ambient thermal resistance (EIA/JESD51-2 and EIA/JESD51-6).
 Θ_{JA} represents the resistance to the heat flows from the chip to ambient air. It is an indicator of package heat dissipation capability. Lower Θ_{JA} , means better overall thermal performance and is calculated as follows:
$$\Theta_{JA} = (T_J - T_A) / P_H$$
where:
 - T_J = junction temperature
 - T_A = ambient temperature
 - P_H = power dissipation.
- Ψ_{JT} is the junction-to-top-center thermal characterization parameter (EIA/JESD51-2 and EIA/JESD51-6).
 Ψ_{JT} is used for estimating the junction temperature by measuring T_T in an actual environment and is calculated as follows:
$$\Psi_{JT} = (T_J - T_T) / P_H$$
where T_T = temperature at the top-center of the package.
- Θ_{JC} is the junction-to-case thermal resistance.
 Θ_{JC} represents the resistance to the heat flows from the chip to package top case. Θ_{JC} is important when external heat sink is attached on package top and is calculated as follows:
$$\Theta_{JC} = (T_J - T_C) / P_H$$
where T_C = case temperature attached with a cold plate.
- Θ_{JB} is the junction-to-board thermal resistance (EIA/JESD51-8).
 Θ_{JB} represents the resistance to the heat flows from the chip to PCB. Θ_{JB} is used in compact thermal models for system-level thermal simulation and is calculated as follows:
$$\Theta_{JB} = (T_J - T_B) / P_H$$
where T_B = board temperature with ring cold plate fixture applied.

Table 11. STM32WL5MOC thermal characteristics

Symbol	$T_J(^{\circ}\text{C})$	$T_T(^{\circ}\text{C})$	$\Psi_{JT}(^{\circ}\text{C}/\text{W})$	$\Theta_{JA}(^{\circ}\text{C}/\text{W})$	$\Theta_{JB}(^{\circ}\text{C}/\text{W})$	$\Theta_{JC}(^{\circ}\text{C}/\text{W})$
Value	96.79	96.70	0.20	25.96	11.49	9.59

7 Ordering information

Table 12. Ordering information

Order code	STSAFE-A110	Flash size	Temperature range	Package type	Pin count	Packing information
STM32WL5MOCH6STR	STSAFE-A110 is provisioned	256 Kbytes	Industrial temperature range, -40 to 85 °C (105 °C junction)	LGA	92	Tape and reel
STM32WL5MOCH6TR	STSAFE-A110 is not provisioned	256 Kbytes	Industrial temperature range, -40 to 85 °C (105 °C junction)	LGA	92	Tape and reel

Note: For a list of available options (such as speed and package) or for further information on any aspect of this device, contact your nearest ST sales office.

8 FCC - ISED compliance statement

FCC Part 15 compliance statement

Changes or modifications not expressly approved by STMicroelectronics could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- This module has been approved under FCC part 15C 15.247. This modular transmitter is only FCC authorized for this specific rule part.
- The module is limited to OEM installation ONLY.
- The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install the module.
- The host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. (For example, Part 15 Subpart B)
- If testing of the host product with this transmitter installed and operating is necessary (to verify that the host product meets all the applicable FCC rules), a test mode for this specific module is available upon request to STMicroelectronics.
- Trace antenna design, and professional installation is not applicable to this modular certification.
- List of antenna types approved: Dipole antenna with max gain 2 dBi.

Radio Frequency (RF) Exposure Compliance of Radio communication

- High output power: To satisfy FCC RF Exposure requirements, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- Low output power: To satisfy FCC RF Exposure requirements, a separation distance of 27mm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

ISED - Industry Canada Licence-Exempt Radio Apparatus

This device contains licence-exempt transmitter(s)/receivers(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

1. This device may not cause interference.
2. This device must accept any interference, including interference that may cause undesired operation of the device.

ISED - Industrie Canada appareil radio exempts de licence

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

1. L'appareil ne doit pas produire de brouillage.
2. L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This module has been approved under RSS-247. This modular transmitter is only ISED-Canada authorized for this specific rule part.

- The module is limited to OEM installation ONLY.
- The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install module.
- The host product manufacturer is responsible for compliance to any other ISED rules that apply to the host not covered by the modular transmitter grant of certification. (For example, ICES-003).
- If testing of the host product with this transmitter installed and operating is necessary (to verify that the host product meets all the applicable ISED rules), a test mode for this specific module is available upon request to STMicroelectronics.
- Trace antenna design, and professional installation is not applicable to this modular certification.
- List of antenna types approved: Dipole antenna with max gain 2 dBi.

Radio Frequency (RF) Exposure Compliance of Radio communication for mobile Apparatus

- High output power: To satisfy ISED-Canada RF Exposure requirements, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- Low output power: To satisfy ISED-Canada RF Exposure requirements, a separation distance of 35mm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

End Product Labeling

FCC Certification

The final end product must be labeled in a visible area with the following: "*Contains Transmitter Module FCC:YCP-32WL5MOCH01*"

ISED Certification

The final end product must be labeled in a visible area with the following:

L'équipement final doit être étiqueté sur un endroit visible avec le texte suivant :

"Contains Transmitter Module IC: 8976A-32WL5MOCH01"

End Product User's Manual:

The user manual for end users must include the following information in a prominent location:

- High output power: *To satisfy FCC RF Exposure requirements, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.*
- Low output power: *To satisfy FCC RF Exposure requirements , a separation distance of 27mm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.*
- High output power: *To satisfy ISED-Canada RF Exposure requirements , a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.*
- Low output power: *To satisfy ISED-Canada RF Exposure requirements, a separation distance of 35mm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at a closer distance than this is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.*

Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.

Revision history

Table 13. Document revision history

Date	Revision	Changes
08-Nov-2023	1	Initial release.
21-Dec-2023	2	<p>Updated the following sections:</p> <ul style="list-style-type: none">• Section Device summary• Section 2: Description• Section 8: FCC - ISED compliance statement• Section 7: Ordering information• Section 3.4: RF antenna impact• Section 3.5.2: STSAFE supply
04-Jan-2024	3	Updated the Section 7: Ordering information and the Section Cover image

Contents

1	Introduction	2
2	Description	3
3	Functional overview	5
3.1	Power supply	5
3.2	SMPS	5
3.3	Clocks	5
3.4	RF antenna impact	5
3.4.1	Impact of the antenna choice on the Tx performances	6
3.4.2	Impact of the antenna choice on the Rx performances	7
3.5	Hardware configurations	9
3.5.1	Solder bridge vs DC switch configuration	9
3.5.2	STSAFE supply	9
4	Pinouts/ballouts, pin description, and alternate functions	11
4.1	Pinout/ballout schematics	11
4.2	Pin description	11
4.3	Alternate functions	15
5	Electrical characteristics	19
5.1	Operating conditions	19
5.2	Power consumption	19
5.3	32 MHz TCXO clock characteristics	20
6	Package information	21
6.1	Device marking	21
6.2	LGA92 package information	21
6.3	Thermal characteristics	23
7	Ordering information	24
8	FCC - ISED compliance statement	25
Important security notice		27
Revision history		28
List of tables		30
List of figures		31

List of tables

Table 1.	STM32WL5MOC features and peripheral counts	3
Table 2.	Legend/abbreviations used in the pinout table	11
Table 3.	STM32WL5MOC pin definition.	12
Table 4.	Alternate function AF0 to AF7	15
Table 5.	Alternate function AF8 to AF15	17
Table 6.	STM32WL5MOC operating conditions	19
Table 7.	Sub-GHz radio power consumption	19
Table 8.	Sub-GHz radio power consumption and effective transmitted output power in [868 to 915]MHz band	20
Table 9.	STM32WL5M TCXO characteristics	20
Table 10.	LGA92 - Mechanical data	22
Table 11.	STM32WL5MOC thermal characteristics.	23
Table 12.	Ordering information.	24
Table 13.	Document revision history.	28

List of figures

Figure 1.	STM32WL5MOC block diagram	4
Figure 2.	Load pull setup	6
Figure 3.	Limitations in Low power mode at 868 MHz	6
Figure 4.	Limitations in High power mode at 915 MHz	7
Figure 5.	Source pull setup	7
Figure 6.	Limitations obtained at 868 MHz	8
Figure 7.	Limitations obtained at 915 MHz	8
Figure 8.	Solder bridge configuration.	9
Figure 9.	DC switch configuration	9
Figure 10.	STSAFE configurations	10
Figure 11.	SIP LGA92 pinout.	11
Figure 12.	LGA92 - Outline	21

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved