

ADSP-SC596/ADSP-SC598

SYSTEM FEATURES

Dual-enhanced SHARC+ high performance floating-point cores

Up to 1000 MHz per SHARC+ core

5 Mb (640 kB) L1 SRAM memory per core with parity (optional ability to configure as cache)

32-bit, 40-bit, and 64-bit floating-point support

32-bit fixed point

Byte, short word, word, long word addressed

Arm Cortex-A55 core

Up to 1200 MHz/3360 DMIPS with advanced SIMD and floating-point support

32 kB L1 instruction cache with parity/32 kB L1 data cache with ECC

256 kB L2 cache with ECC

Powerful DMA system with 8 MemDMAs

On-chip memory protection

Integrated safety features

17 mm x 17 mm, 400-ball BGA_ED (0.8 mm pitch), RoHS compliant

Low system power across automotive temperature range

MEMORY

Large (up to 2 MB) on-chip L2 SRAM with ECC protection

One L3 interface optimized for low system power, providing 16-bit interface to DDR3/DDR3L devices

ADDITIONAL FEATURES

Security and Protection

Cryptographic hardware accelerators

Fast secure boot with IP protection

Supports Arm TrustZone and cryptographic extension

Accelerators

FIR, IIR offload engines

AEC-Q100 qualified for automotive applications

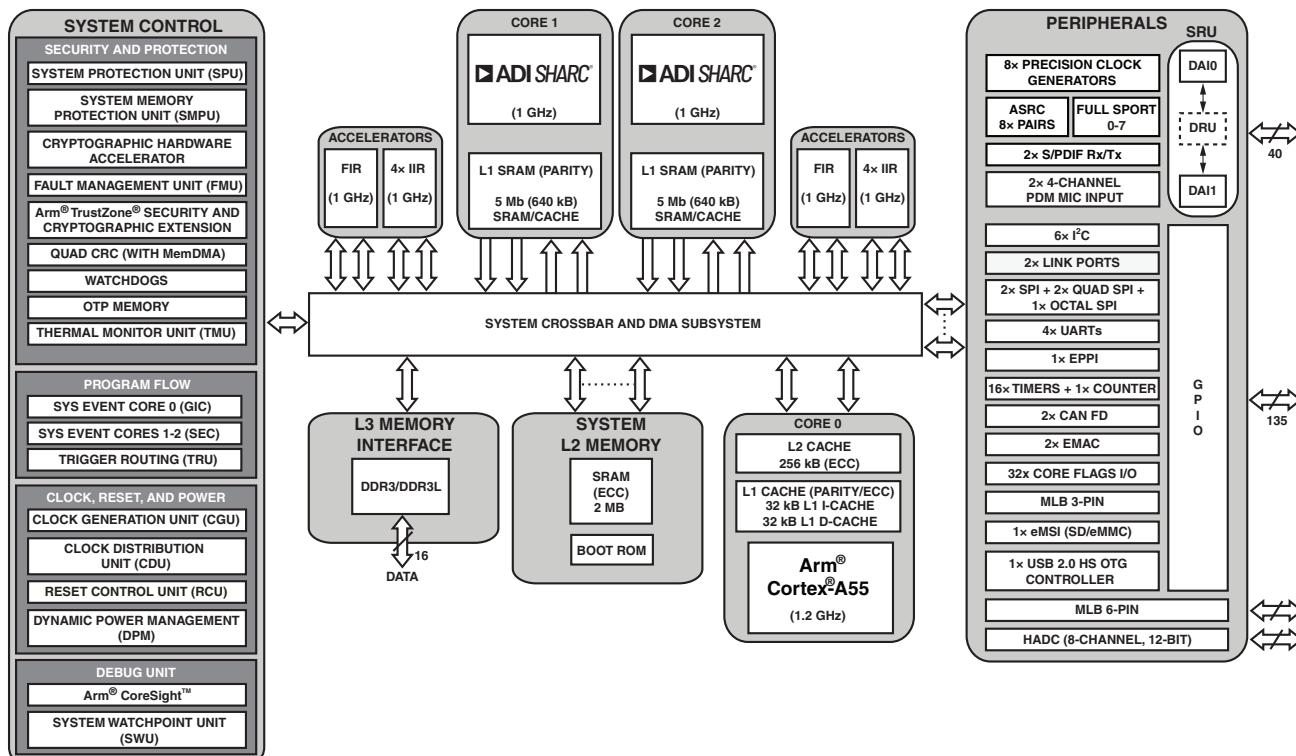


Figure 1. ADSP-SC598 (Full-Featured Model) Processor Block Diagram

SHARC, SHARC+, and the SHARC logo are registered trademarks of Analog Devices, Inc.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADSP-SC596/ADSP-SC598

TABLE OF CONTENTS

System Features	1	GPIO Multiplexing for 400-Ball BGA_ED Package	40
Memory	1	ADSP-SC596/ADSP-SC598 Designer Quick Reference	45
Additional Features	1	Specifications	61
Table of Contents	2	Operating Conditions	61
Revision History	2	Electrical Characteristics	64
General Description	3	HADC	68
ARM Cortex-A55 Processor	5	TMU	69
SHARC Processor	6	Absolute Maximum Ratings	69
SHARC+ Core Architecture	8	ESD Caution	69
System Infrastructure	10	Timing Specifications	70
System Memory Map	11	Output Drive Currents	125
Security Features	14	Test Conditions	128
Security Features Disclaimer	14	Environmental Conditions	130
Safety Features	15	ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Ball	
Processor Peripherals	15	Assignments	131
System Acceleration	20	Numerical by Ball Number	131
System Design	20	Alphabetical by Pin Name	134
System Debug	23	Configuration of the ADSP-SC596/ADSP-SC598	
Development Tools	23	400-Ball BGA_ED	137
Additional Information	24	Outline Dimensions	138
Related Signal Chains	24	Surface-Mount Design	138
ADSP-SC596/ADSP-SC598 Detailed Signal Descriptions	25	Automotive Products	139
400-Ball BGA_ED Signal Descriptions	30	Planned Automotive Production Products	139
		Planned Production Products	139

REVISION HISTORY

7/2023—Revision 0: Initial Version

GENERAL DESCRIPTION

The ADSP-SC596/ADSP-SC598 processors are members of the SHARC® family of products. The processors are based on the SHARC+® dual-core and the Arm® Cortex®-A55 core. The ADSP-SC596/ADSP-SC598 SHARC processors are members of the single-instruction, multiple data (SIMD) SHARC family of digital signal processors (DSPs) that feature Analog Devices Super Harvard Architecture. These 32-bit/40-bit/64-bit floating-point processors are optimized for high performance audio/floating-point applications with large on-chip static random-access memory (SRAM), multiple internal buses that eliminate input/output (I/O) bottlenecks, and innovative digital audio interfaces (DAI). New additions to the SHARC+ core include cache enhancements and branch prediction, while maintaining instruction set compatibility to previous SHARC products.

By integrating a set of industry leading system peripherals and memory, the Arm Cortex-A55 and SHARC processor is the platform of choice for applications that require programmability similar to reduced instruction set computing (RISC), multimedia support, and leading edge signal processing in one integrated package. These applications span a wide array of markets, including automotive, professional audio, and industrial-based applications that require high floating-point performance.

Table 1 provides comparison information for features that vary across the standard processors.

ADSP-SC596/ADSP-SC598

Table 1. Processor Features¹

Processor Feature	ADSP-SC596	ADSP-SC598
Arm Cortex-A55 (MHz, Maximum) ²	1200	1200
Arm Core L1 Cache (I, D kB)	32, 32	32, 32
Arm Core L2 Cache (kB)	256	256
SHARC+ Core1 (MHz, Maximum) ²	1000	812.5, 1000
SHARC+ Core2 (MHz, Maximum) ²	N/A	812.5, 1000
SHARC L1 SRAM (kB)	1 × 640	2 × 640
System Memory		
L2 SRAM (Shared) (MB)	2	2
DDR3/DDR3L Controller (16-Bit)	1	1
Hardware Accelerators		
FIR	1 per SHARC+ core	1 per SHARC+ core
IIR	4 per SHARC+ core	4 per SHARC+ core
Security Cryptographic Engine	Yes	Yes
DAI (Includes SRU and DRU)	2	2
Full SPORTs	8 (4 per DAI)	8 (4 per DAI)
S/PDIF Receive/Transmit	2 (1 per DAI)	2 (1 per DAI)
ASRCs	8 (4 per DAI)	8 (4 per DAI)
4-Channel PDM Microphone (MIC) Input	2 (1 per DAI)	2 (1 per DAI)
PCGs	8 (4 per DAI)	8 (4 per DAI)
Pin Buffers	40 (20 per DAI)	40 (20 per DAI)
Multiplexed Peripherals		
MLB 3-Pin	Yes ³	Yes ³
eMSI (SD/eMMC)	1	1
Link Ports	2	2
GP Counter	1	1
I ² C (TWI)	6	6
Watchdog Timers	3	3
GP Timers	16	16
Octal SPI	1	1
Quad-Data Bit SPI	2	2
Dual-Data Bit SPI	2	2
UARTs	4	4
ePPI	1	1
USB 2.0 HS OTG Controller	1	1
EMAC Std	10/100	10/100
EMAC Std/AVB + Timer IEEE 1588	10/100/1000	10/100/1000
CAN FD	2 ³	2 ³
MLB 6-Pin	Yes ³	Yes ³
Multichannel 12-Bit ADC	8-channel ⁴	8-channel ⁴
GPIO Ports	Port A to Port I	Port A to Port I
GPIO + DAI Pins	135 + 40	135 + 40
Package Options	400- ball BGA_ED	400- ball BGA_ED

¹N/A means not applicable.

²Multiple values indicate various speed grades. See [Automotive Products](#), [Planned Automotive Production Products](#), and [Planned Production Products](#).

³Applies to automotive models only. See [Automotive Products](#) and [Planned Automotive Production Products](#).

⁴The HADC can support up to 7 additional channels using an external multiplexer.

ARM CORTEX-A55 PROCESSOR

The Arm Cortex-A55 processor (Figure 2) is a mid-range, low-power core that implements the Armv8-A architecture with support for the Armv8.1-A extension, the Armv8.2-A extension, and the reliability, availability, and serviceability (RAS) extension. The core is implemented inside the DynamIQ shared unit (DSU) as a little core.

The Arm Cortex-A55 core includes the following features:

- Core Features
 - Full implementation of the Arm8.2-A A64, A32, and T32 instruction sets
 - Both AArch32 and AArch64 execution states at all exception levels (EL0 to EL3)
 - In-order pipeline with direct and indirect branch prediction
 - Separate L1 data and instruction side memory systems with a memory management unit (MMU)
 - Support for Arm TrustZone® technology
 - Extension—data engine unit that implements the advanced SIMD and floating-point architecture support
 - Extension—cryptographic extension
 - Generic interrupt controller (GIC) CPU interface to connect to an external distributor
 - Generic timers interface that supports a 64-bit count input from an external system counter
- Cache Features
 - L1 instruction cache unit (32 KB), L1 data cache unit (32 KB), and unified private L2 cache unit (256 KB)
 - L1 and L2 cache protection in the form of error correction code (ECC) or parity on all RAM instances
- Debug Features
 - Reliability, availability, and serviceability (RAS) extension
 - Armv8.2-A debug logic
 - Performance monitoring unit (PMU)
 - Embedded trace macrocell (ETM) that supports instruction trace only

Generic Interrupt Controller (GIC), GIC-600

The generic interrupt controller (GIC) is a centralized resource for supporting and managing interrupts. The GIC consists of three interfaces—the distributor interface (GICD), the redistributor interface (GICR), and the central processing unit (CPU) interface. The distributor and the redistributor interfaces configure interrupts. The CPU interface handles interrupts.

GIC Distributor Interface (GICD)

The distributor performs interrupt prioritization and distribution of shared peripheral interrupts (SPIs) and software generated interrupts (SGIs) to the redistributors and CPU interfaces that are connected to the processors in the system. The distributor provides the routing configuration for SPIs and holds all the associated routing and priority information for private peripheral interrupts (SPIs).

GIC Redistributor Interface (GICR)

The redistributor provides the configuration settings for SGIs and PPIs. The redistributor holds the control, prioritization, and pending information for all SGIs and PPIs. It also presents the pending interrupt with the highest priority to the CPU interface.

GIC CPU Interface

The GIC CPU interface block performs priority masking and preemption handling for a connected processor in the system. The GIC supports 16 SGIs, 9 PPIs, and 354 SPIs.

GIC Performance Monitoring Unit (GIC PMU)

The GIC contains a performance monitoring unit (PMU) for counting key GIC events from the distributor. Redistributor events are not tracked by the PMU. The delivery of PPI and SGI interrupts are counted by recording calls to the core interrupt service routine. The PMU has five counters with snapshot capability and overflow interrupt.

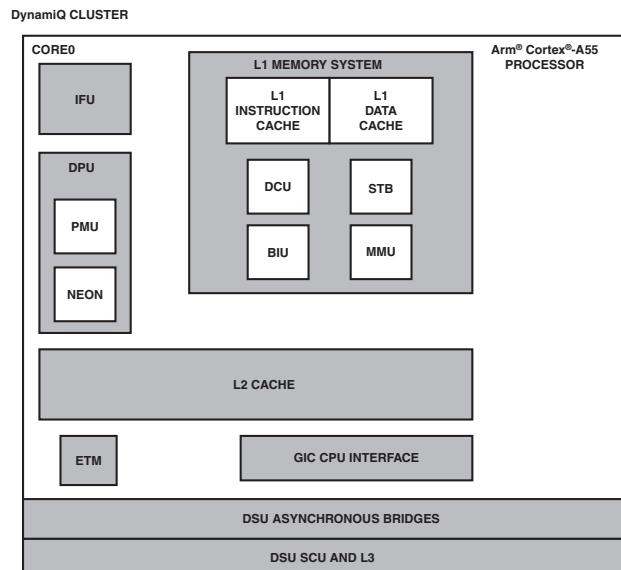


Figure 2. Arm Cortex-A55 Processor Block Diagram

ADSP-SC596/ADSP-SC598

Cryptographic Extension

The Cortex-A55 core cryptographic extension supports the Armv8-A cryptographic extension. The cryptographic extension adds new A64, A32, and T32 instructions to advanced SIMD that accelerate:

- Advanced encryption standard (AES) encryption and decryption
- Secure hash algorithm (SHA) functions SHA-1, SHA-224, and SHA-256
- Finite field arithmetic used in algorithms such as Galois/Counter mode and elliptic curve cryptography

SHARC PROCESSOR

The SHARC processor integrates a SHARC+ SIMD core, L1 memory crossbar, I-cache/D-cache controller, L1 memory blocks, and the requester/completer ports, as shown in [Figure 3](#). The SHARC+ SIMD core block diagram is shown in [Figure 4](#).

The SHARC processor supports a modified Harvard architecture in combination with a hierarchical memory structure. L1 memories typically operate at the full processor speed with little or no latency.

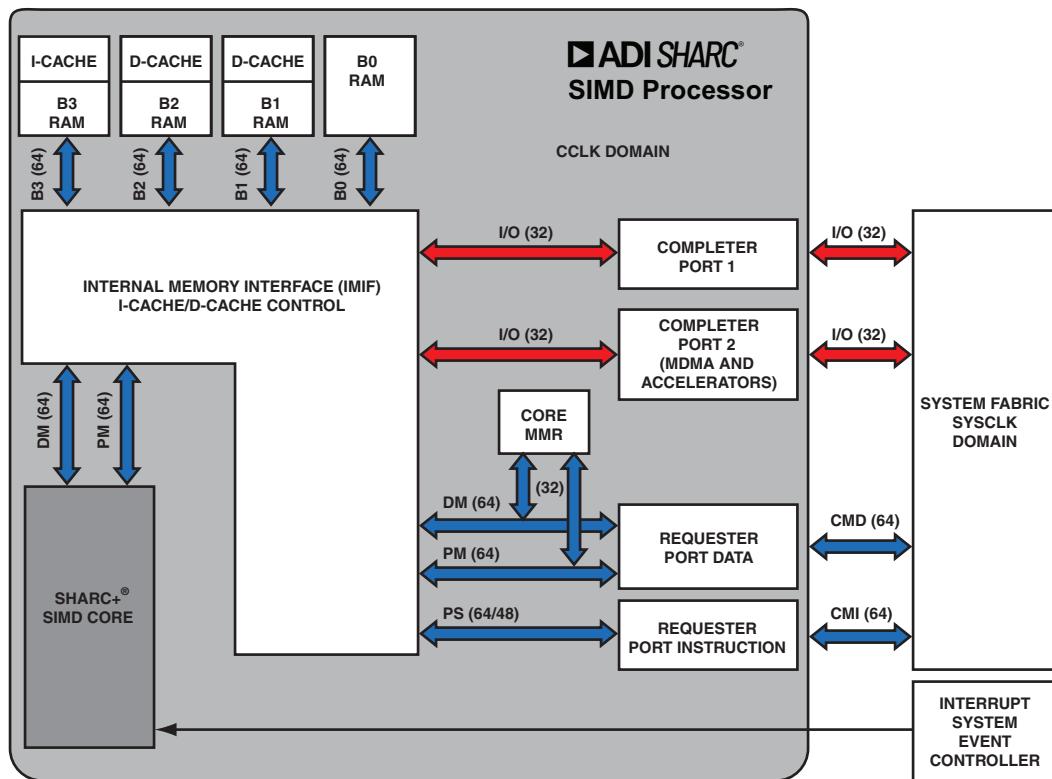


Figure 3. SHARC Processor Block Diagram

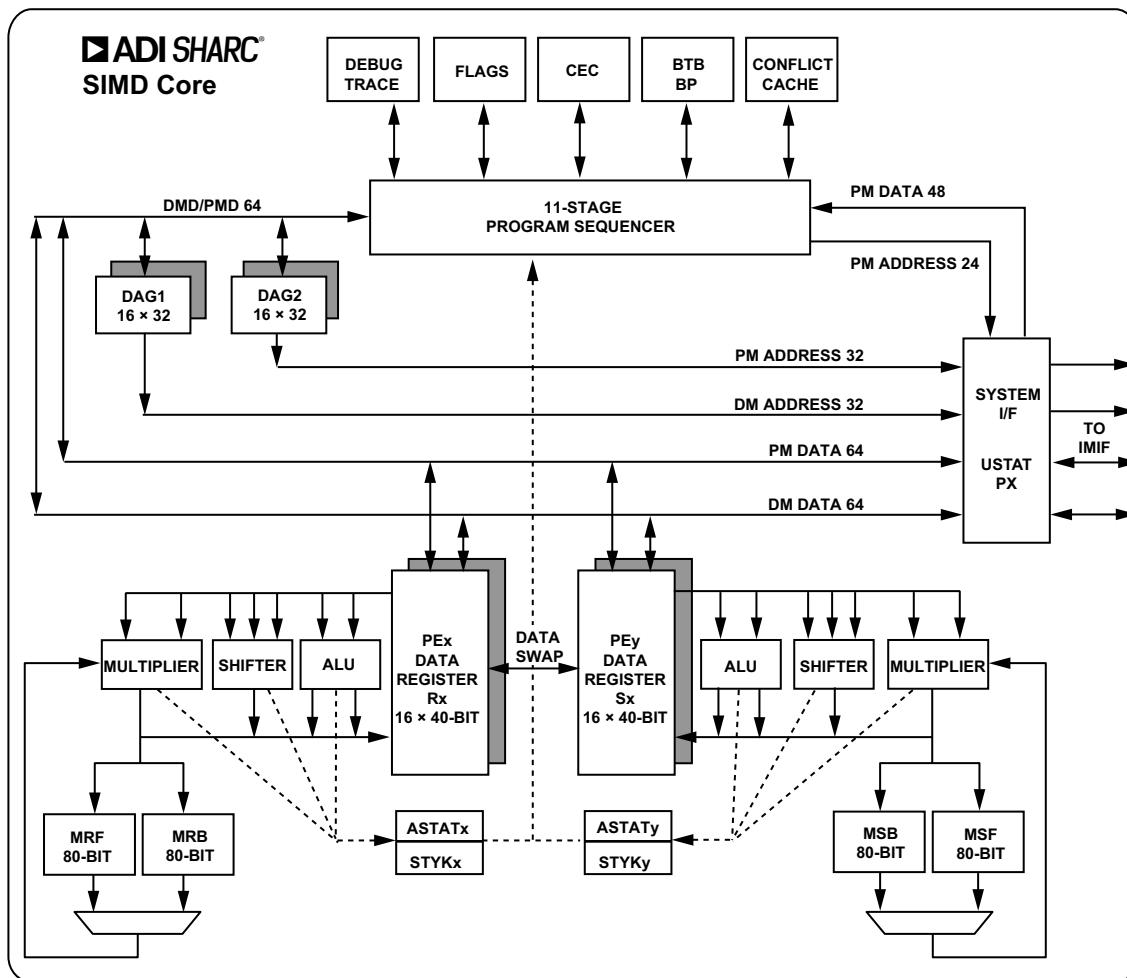


Figure 4. SHARC+ SIMD Core Block Diagram

L1 Memory

Figure 5 shows the ADSP-SC596/ADSP-SC598 memory map. Each SHARC+ core has a tightly coupled 5 Mb L1 SRAM. Each SHARC+ core can access code and data in a single cycle from this memory space. The Arm Cortex-A55 core can also access this memory space with multicycle accesses.

In the SHARC+ core private address space, both cores have L1 memory.

SHARC+ core memory-mapped register (CMMR) address space is 0x00000000 through 0x0003FFFF in normal word (32-bit). Each block can be configured for different combinations of code and data storage. Of the 5 Mb SRAM, up to 1 Mb can be configured for data memory (DM), program memory (PM), and instruction cache. Each memory block supports single-cycle, independent accesses by the core processor and I/O processor. The memory architecture, in combination with its separate on-chip buses, allows two data transfers from the core and one from the direct memory access (DMA) engine in a single cycle.

The SRAM of the processor can be configured as a maximum of 160k words of 32-bit data, 320k words of 16-bit data, 106.7k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 5 Mb. All of the memory can be accessed as 8-bit, 16-bit, 32-bit, 48-bit, or 64-bit words. Support of a 16-bit floating-point storage format doubles the amount of data that can be stored on chip.

Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. Whereas each memory block can store combinations of code and data, accesses are most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers.

Using the DM and PM buses, with each bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache.

ADSP-SC596/ADSP-SC598

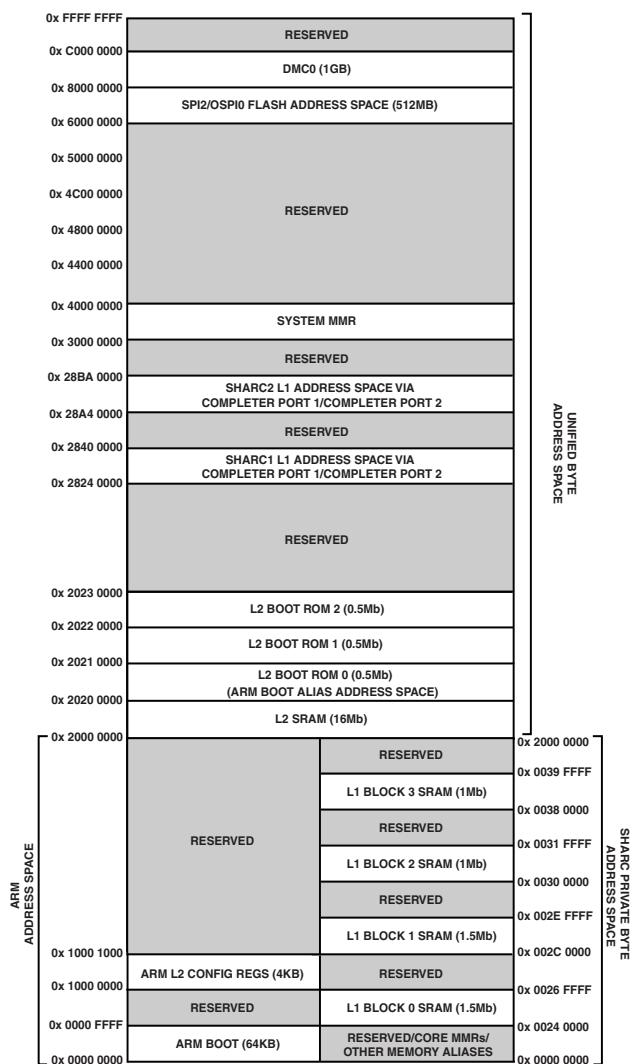


Figure 5. ADSP-SC596/ADSP-SC598 Memory Map

The system configuration is flexible, but a typical configuration is 512 kb DM, 128 kb PM, and 128 kb of instruction cache, with the remaining L1 memory configured as SRAM. Each addressable memory space outside the L1 memory can be accessed either directly or via cache.

The memory map in [Table 2](#) gives the L1 memory address space and shows multiple L1 memory blocks offering a configurable mix of SRAM and cache.

L1 Requester and Completer Ports

Each SHARC+ core has two requester/completer ports to and from the system fabric. One requester port fetches instructions. The second requester port drives data to the system world. Completer Port 1 together with Completer Port 2 memory direct memory access (MDMA) run conflict free access to the individual memory blocks. For the completer port address, refer to the L1 memory address map in [Table 2](#).

L1 On-Chip Memory Bandwidth

The internal memory architecture allows programs to have four accesses at the same time to any of the four blocks, assuming no block conflicts. The total bandwidth is realized using both the DMD and PMD buses (2 × 64-bits CCLK speed and 2 × 32-bit SYSCLK speed).

Instruction and Data Cache

The ADSP-SC596/ADSP-SC598 processors also include a traditional instruction cache (I-cache) and two data caches (D-caches, one each for PM/DM) with parity support for all caches. These caches support one instruction access and two data accesses over the DM and PM buses per CCLK cycle. The cache controllers automatically manage the configured L1 memory. The system can configure part of the L1 memory for automatic management by the cache controllers. The sizes of these caches are independently configurable from 0 to 128 kB each. The memory not managed by the cache controllers is directly addressable by the processors. The controllers ensure the data coherence between the two data caches. The caches provide user controllable features such as full and partial locking, range bound invalidation, and flushing.

Core Memory-Mapped Registers (CMMR)

The core memory-mapped registers (CMMR) control the L1 instruction and data cache, branch target buffer (BTB), L2 cache, parity error, system control, debug, and monitor functions.

SHARC+ CORE ARCHITECTURE

The ADSP-SC596/ADSP-SC598 processors are assembly code compatible with all previous SHARC processors featuring the SHARC or SHARC+ core, beginning with the first generation ADSP-2106x SHARC processors and including the ADSP-2116x, ADSP-2126x, ADSP-213xx, ADSP-214xx, and ADSP-SC5xx/ADSP-215xx processors.

The SIMD architecture featured on the ADSP-SC596/ADSP-SC598 processors is identical to all previous SIMD SHARC processors, namely the ADSP-2116x, ADSP-2126x, ADSP-213xx, ADSP-214xx, and ADSP-SC5xx/ADSP-215xx processors, as shown in [Figure 4](#) and as described in the following sections.

Single-Instruction, Multiple Data (SIMD) Computational Engine

The SHARC+ core contains two computational processing elements that operate as a single-instruction, multiple data (SIMD) engine.

The processing elements are referred to as PEx and PEY, each containing an arithmetic logic unit (ALU), multiplier, shifter, and register file. PEx is always active, and PEY is enabled by setting the PEYEN mode bit in the mode control register (MODE1).

SIMD mode allows the processors to execute the same instruction in both processing elements, but each processing element operates on different data. This architecture efficiently executes math intensive DSP algorithms. In addition to all the features of

previous generation SHARC cores, the SHARC+ core also provides a new and simpler way to execute an instruction only on the PEy data register.

SIMD mode doubles the bandwidth between memory and the processing elements, as required for sustained computational operation of two processing elements. When using the data address generators (DAGs) to transfer data in SIMD mode, two data values transfer with each memory or register file access.

Independent Parallel Computation Units

Within each processing element is a set of pipelined computational units. The computational units consist of a multiplier, an ALU, and a shifter. These units are arranged in parallel, maximizing computational throughput. These computational units support IEEE 32-bit single-precision floating-point; 40-bit extended-precision floating-point; IEEE 64-bit double-precision floating-point; and 32-bit fixed-point data formats.

A multifunction instruction set supports parallel execution of the ALU and multiplier operations. In SIMD mode, the parallel ALU and multiplier operations occur in both processing elements per core.

All processing operations take one cycle to complete. For all floating-point operations, the processor takes two cycles to complete in case of data dependency. Double-precision floating-point data take two to six cycles to complete. The processor stalls for the appropriate number of cycles for an interlocked pipeline plus data dependency check.

Core Timer

Each SHARC+ processor core includes an extra timer. This extra timer is clocked by the internal processor clock and is typically used as a system tick clock for generating periodic operating system interrupts.

Data Register File

Each processing element contains a general-purpose data register file. The register files transfer data between the computation units and the data buses, and store intermediate results. These 10-port, 32-register register files (16 primary, 16 secondary), combined with the enhanced Harvard architecture of the processor, allow unconstrained data flow between computation units and internal memory. The registers in the PEx data register file are referred to as R0–R15 and in the PEy data register file as S0–S15.

Context Switch

Many of the registers of the processor have secondary registers that can activate during interrupt servicing for a fast context switch. The data, DAG, and multiplier result registers have secondary registers. The primary registers are active at reset, whereas control bits in MODE1 activate the secondary registers.

Universal Registers

General-purpose tasks use the universal registers. The four universal status (USTAT) registers allow easy bit manipulations (set, clear, toggle, test, XOR) for all control and status peripheral registers.

The data bus exchange register (PX) permits data to pass between the 64-bit PM data bus and the 64-bit DM data bus or between the 40-bit register file and the PM or DM data bus. These registers contain hardware to handle the data width difference.

Data Address Generators (DAG) With Zero Overhead Hardware Circular Buffer Support

For indirect addressing and implementing circular data buffers in hardware, the ADSP-SC596/ADSP-SC598 processors use two data address generators (DAGs). Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing and are commonly used in digital filters and fast Fourier transforms (FFT). The DAGs contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets and 16 secondary sets). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set Architecture (ISA)

The flexible instruction set architecture (ISA), a 48-bit instruction word, accommodates various parallel operations for concise programming. For example, the processors can conditionally execute a multiply, an add, and a subtract in both processing elements while branching and fetching up to four 32-bit values from memory—all in a single instruction. Additionally, the double-precision floating-point instruction set is new to the SHARC+ core, as compared with the previous SHARC core.

Variable Instruction Set Architecture (VISA)

In addition to supporting the standard 48-bit instructions from previous SHARC core processors, the SHARC+ core processors support 16-bit and 32-bit opcodes for many instructions, formerly 48-bit in the ISA. This variable instruction set architecture (VISA) feature drops redundant or unused bits within the 48-bit instruction to create more efficient and compact code. The program sequencer supports fetching these 16-bit and 32-bit instructions from both internal and external memories. VISA is not an operating mode; rather, it is address dependent (refer to the ISA/VISA address spaces in [Table 5](#)). Finally, the processor allows jumps between ISA and VISA instruction fetches.

Single-Cycle Fetch of Instructional Four Operands

The ADSP-SC596/ADSP-SC598 processors feature an enhanced Harvard architecture in which the DM bus transfers data and the PM bus transfers both instructions and data.

With the separate program memory bus, data memory buses, and on-chip instruction conflict cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction from the conflict cache in a single cycle.

Core Event Controller (CEC)

The SHARC+ core event controller (CEC) can be configured to service various interrupts generated by the core (including arithmetic and circular buffer instruction flow exceptions) and

ADSP-SC596/ADSP-SC598

system event controller (SEC) events (peripheral interrupt request, debug or monitor, and software-raised), responding only to interrupts enabled in the IMASK register. The output of the SEC is forwarded to the CEC to respond directly to any enabled system interrupts. For all SEC channels, the processor automatically stacks the arithmetic status (ASTATx and ASTATy) registers and mode (MODE1) register in parallel with interrupt servicing.

Instruction Conflict Cache

The processors include a 32-entry instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions that require fetches conflict with the PM bus data access cache. This cache allows full speed execution of core looped operations, such as digital filter multiply accumulates and FFT butterfly processing. The conflict cache serves for on-chip bus conflicts only.

Branch Target Buffer (BTB)/Branch Predictor (BP)

Implementation of a hardware-based branch predictor (BP) and branch target buffer (BTB) reduce branch delay. The program sequencer supports efficient branching using the BTB for conditional and unconditional instructions.

Addressing Spaces

In addition to traditionally supported long word, normal word, extended precision word, and short word addressing aliases, the processors support byte addressing for the data and instruction accesses. The enhanced ISA/VISA provides new instructions for accessing all sizes of data from byte space, as well as converting word addresses to byte addresses and byte addresses to word addresses.

SHARC Fabric

The FIR/IIR accelerators on the ADSP-SC596/ADSP-SC598 processors are integrated closely with the SHARC+ core with the help of a dedicated SHARC fabric and run at CCLK speed. This allows the FIR/IIR accelerator requester ports to directly access the SHARC L1 memory with reduced latency, as these accesses do not go through the main system fabric. These accesses are arbitrated between both the SHARC+ core complete ports. The SHARC+ core can also access the FIR/IIR accelerator MMR registers directly.

Additional Features

The enhanced ISA/VISA of the ADSP-SC596/ADSP-SC598 processors provides a memory barrier instruction for data synchronization, exclusive data access support for multicore data sharing, and exclusive data access to enable multiprocessor programming. To enhance the reliability of the application, L1 data RAMs support parity error detection for every byte, and illegal opcodes are also detected (core interrupts flag both errors). Requester ports of the core also detect failed external accesses.

SYSTEM INFRASTRUCTURE

The following sections describe the system infrastructure of the ADSP-SC596/ADSP-SC598 processors.

System L2 Memory

A system L2 SRAM memory of up to 16 Mb (2 MB) is available to both SHARC+ cores, the Arm Cortex-A55 core, and the system DMA channels (see [Table 3](#)). The L2 SRAM block is subdivided into up to eight banks to support concurrent access to the L2 memory ports. Memory accesses to the L2 memory space are multicycle accesses by both the Arm Cortex-A55 and SHARC+ cores.

The memory space is used for various situations including

- Arm Cortex-A55 to SHARC+ core data sharing and intercore communications
- Accelerator and peripheral sources and destination memory to avoid accessing data in the external memory
- A location for DMA descriptors
- Storage for additional data for either the Arm Cortex-A55 or SHARC+ cores to avoid external memory latencies and reduce external memory bandwidth
- Storage for incoming Ethernet traffic to improve performance
- Storage for data coefficient tables cached by the SHARC+ core

See the [System Memory Protection Unit \(SMPU\)](#) section for options in limiting access by specific cores and DMA requesters.

The Arm Cortex-A55 core has an L1 instruction and data cache, each of which is 32 kB in size. The core also has an L2 cache controller of 256 kB. When enabling the caches, accesses to all other memory spaces (internal and external) go through the cache.

SHARC+ Core L1 Memory in Multiprocessor Space

The Arm Cortex-A55 core can access the L1 memory of the SHARC+ core. See [Table 4](#) for the L1 memory address in multiprocessor space. The SHARC+ core can access the L1 memory of the other SHARC+ core in the multiprocessor space.

One Time Programmable Memory (OTP)

The processors feature 7 kb of one time programmable (OTP) memory that is memory-map accessible. This memory can be programmed with custom keys and supports secure boot and secure operation.

I/O Memory Space

Mapped I/Os include SPI2/OSPI0 memory address space (see [Table 5](#)).

SYSTEM MEMORY MAP

Table 2. L1 Block 0, Block 1, Block 2, and Block 3 SHARC+® Addressing Memory Map (Private Address Space)

Memory	Long Word (64 Bits)	Extended Precision/ISA Code (48 Bits)	Normal Word (32 Bits)	Short Word/VISA Code (16 Bits)	Byte Access (8 Bits)
L1 Block 0 SRAM (192 KB)	0x00048000–0x0004DFFF	0x00090000–0x00097FFF	0x00090000–0x0009BFFF	0x00120000–0x00137FFF	0x00240000–0x0026FFFF
L1 Block 1 SRAM (192 KB)	0x00058000–0x0005DFFF	0x000B0000–0x000B7FFF	0x000B0000–0x000BBFFF	0x00160000–0x00177FFF	0x002C0000–0x002EFFFF
L1 Block 2 SRAM (128 KB)	0x00060000–0x00063FFF	0x000C0000–0x000C5554	0x000C0000–0x000C7FFF	0x00180000–0x0018FFFF	0x00300000–0x0031FFFF
L1 Block 3 SRAM (128 KB)	0x00070000–0x00073FFF	0x000E0000–0x000E5554	0x000E0000–0x000E7FFF	0x001C0000–0x001CFFFF	0x00380000–0x0039FFFF

Table 3. L2 Memory Addressing Map

Memory	Byte Address Space Arm Cortex-A55: Data Access and Instruction Fetch SHARC+: Data Access	Normal Word Address Space SHARC+ Data Access	VISA Address Space SHARC+ Instruction Fetch	ISA Address Space SHARC+ Instruction Fetch
	Arm: 0x00000000–0x0000FFFF			
L2 Boot ROM0	0x20200000–0x2020FFFF	0x08080000–0x08083FFF	0x00C20000–0x00C27FFF	0x00520000–0x00522AA9
L2 RAM (2 MB) ¹	0x20000000–0x201FFFFF	0x08000000–0x0807FFFF	0x00B00000–0x00BFFFFFF	0x00580000–0x005D5554
L2 Boot ROM1	0x20210000–0x2021FFFF	0x08084000–0x08087FFF	0x00C00000–0x00C07FFF	0x00500000–0x00502AA9
L2 Boot ROM2	0x20220000–0x2022FFFF	0x08088000–0x0808BFFF	0x00C40000–0x00C47FFF	0x00540000–0x00542AA9

¹ All L2 RAM blocks are subdivided into eight 256 KB banks.

Table 4. SHARC+® L1 Memory in Multiprocessor Space

		Memory Block	Byte Address Space Arm Cortex-A55 and SHARC+	Normal Word Address Space SHARC+
L1 Memory of SHARC1 in Multiprocessor Space	Address via Completer 1 Port	Block 0	0x28240000–0x2826FFFF	0x0A090000–0x0A09BFFF
		Block 1	0x282C0000–0x282EFFFF	0x0A0B0000–0x0A0BBFFF
		Block 2	0x28300000–0x2831FFFF	0x0A0C0000–0x0A0C7FFF
		Block 3	0x28380000–0x2839FFFF	0x0A0E0000–0x0A0E7FFF
L1 Memory of SHARC2 in Multiprocessor Space	Address via Completer 1 Port	Block 0	0x28A40000–0x28A6FFFF	0x0A290000–0x0A29BFFF
		Block 1	0x28AC0000–0x28AEFFFF	0x0A2B0000–0x0A2BBFFF
		Block 2	0x28B00000–0x28B1FFFF	0x0A2C0000–0x0A2C7FFF
		Block 3	0x28B80000–0x28B9FFFF	0x0A2E0000–0x0A2E7FFF

ADSP-SC596/ADSP-SC598

Table 5. Memory Map of Mapped I/Os¹

	Byte Address Space Arm Cortex-A55: Data Access and Instruction Fetch SHARC+: Data Access	Normal Word Address Space SHARC+ Data Access	VISA Address Space SHARC+ Instruction Fetch	ISA Address Space SHARC+ Instruction Fetch
SPI2/OSPI0 Memory (512 MB)	0x60000000–0x600FFFFF	0x04000000–0x07FFFFFF	0x00F80000–0x00FFFFFF	0x00780000–0x007AAAAA
	0x60100000–0x602FFFFF		Not available	0x007AAAAB–0x007FFFFF
	0x60300000–0x603FFFFF		0x00E80000–0x00EFFFFFF	0x00680000–0x006AAAAA
	0x60400000–0x605FFFFF		Not available	0x006AAAAB–0x006FFFFF
	0x60600000–0x6FFFFFFF		Not available	Not available
	0x70000000–0x7FFFFFFF		Not available	Not available

¹The Arm Cortex-A55 can access the entire byte address space. The SHARC+ VISA/ISA address space for instruction fetch and the normal word address space for data access do not cover the entire byte address space.

Table 6. DMC Memory Map¹

	Byte Address Space Arm Cortex-A55: Data Access and Instruction Fetch SHARC+: Data Access	Normal Word Address Space SHARC+ Data Access	VISA Address Space SHARC+ Instruction Fetch	ISA Address Space SHARC+ Instruction Fetch
DMC0 (1 GB)	0x80000000–0x805FFFFF	0x10000000–0x17FFFFFF	Not applicable	0x00400000–0x004FFFFF
	0x80600000–0x809FFFFF		Not applicable	Not applicable
	0x80A00000–0x80FFFFFF		0x00800000–0x00AFFFFF	Not applicable
	0x81000000–0x9FFFFFFF		Not applicable	Not applicable
	0xA0000000–0xBFFFFFFF		Not applicable	Not applicable

¹The Arm Cortex-A55 can access the entire byte address space. The SHARC+ VISA/ISA address space for instruction fetch and the normal word address space for data access do not cover the entire byte address space.

System Crossbars (SCBs)

The system crossbars (SCBs) are the fundamental building blocks of a switch fabric style for on-chip system bus interconnection. The SCBs connect system bus requesters to system bus completers, providing concurrent data transfer between multiple bus requesters and multiple bus completers. A hierarchical model—built from multiple SCBs—provides a power and area efficient system interconnection.

The SCBs provide the following features:

- Highly efficient, pipelined bus transfer protocol for sustained throughput
- Full-duplex bus operation for flexibility and reduced latency
- Concurrent bus transfer support to allow multiple bus requesters to access bus completers simultaneously
- Protection model (privileged/secure) support for selective bus interconnect protection

Direct Memory Access (DMA)

The processors use direct memory access (DMA) to transfer data within memory spaces or between a memory space and a peripheral. The processors can specify data transfer operations

and return to normal processing while the fully integrated DMA controller carries out the data transfers independent of processor activity.

DMA transfers can occur between memory and a peripheral or between one memory and another memory. Each memory to memory DMA stream uses two channels: the source channel and the destination channel.

All DMA channels can transport data to and from all on-chip and off-chip memories. Programs can use two types of DMA transfers: descriptor-based or register-based. Register-based DMA allows the processors to program DMA control registers directly to initiate a DMA transfer. On completion, the DMA control registers automatically update with original setup values for continuous transfer. Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a DMA sequence. Descriptor-based DMA transfers allow multiple DMA sequences to be chained together. Program a DMA channel to set up and start another DMA transfer automatically after the current sequence completes.

The DMA engine supports the following DMA operations:

- A single linear buffer that stops on completion
- A linear buffer with negative, positive, or zero stride length
- A circular autorefreshing buffer that interrupts when each buffer becomes full

- A similar circular buffer that interrupts on fractional buffers, such as at the halfway point
- The 1D DMA uses a set of identical ping pong buffers defined by a linked ring of two-word descriptor sets, each containing a link pointer and an address
- The 1D DMA uses a linked list of four-word descriptor sets containing a link pointer, an address, a length, and a configuration
- The 2D DMA uses an array of one-word descriptor sets, specifying only the base DMA address
- The 2D DMA uses a linked list of multiword descriptor sets, specifying all configurable parameters

Memory Direct Memory Access (MDMA)

The processor supports various memory direct memory access (MDMA) operations, including,

- Enhanced bandwidth MDMA channels with cyclic redundant code (CRC) protection (32-bit bus width, run on SYCLK)
- Enhanced bandwidth MDMA channel (32-bit bus width, runs on SYCLK)
- Maximum bandwidth MDMA channel (64-bit bus width, runs on SYCLK)

Extended Memory DMA

Extended memory DMA supports various operating modes, such as delay line (which allows processor reads and writes to external delay line buffers and to the external memory), with limited core interaction and scatter/gather DMA (writes to and from noncontiguous memory blocks).

Cyclic Redundancy Check (CRC) Protection

The cyclic redundancy check (CRC) protection modules allow system software to calculate the signature of code, data, or both in memory, the content of memory-mapped registers, or periodic communication message objects. Dedicated hardware circuitry compares the signature with precalculated values and triggers appropriate fault events.

For example, the system software initiates the signature calculation of the entire memory contents every 100 ms and compares this with expected, precalculated values. If a mismatch occurs, a fault condition is generated through the processor core or the trigger routing unit.

The CRC is a hardware module based on a CRC32 engine that computes the CRC value of the 32-bit data-words presented to it. The source channel of the memory to memory DMA (in memory scan mode) provides data. The data can be optionally forwarded to the destination channel (memory transfer mode). The main features of the CRC peripheral are as follows:

- Memory scan mode
- Memory transfer mode
- Data verify mode
- Data fill mode

- User-programmable CRC32 polynomial
- Bit and byte mirroring option (endianness)
- Fault and error interrupt mechanisms
- 1D and 2D fill block to initialize an array with constants
- 32-bit CRC signature of a block of memory or an MMR block

Event Handling

The processors provide event handling that supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously. Prioritization ensures that servicing a higher priority event takes precedence over servicing a lower priority event.

The processors provide support for four different types of events:

- An emulation event causes the processors to enter emulation mode, allowing command and control of the processors through the JTAG interface.
- A reset event resets the processors.
- An exception event occurs synchronously to program flow (in other words, the exception is taken before the instruction is allowed to complete). Conditions triggered by the SHARC+ core, such as data alignment (SIMD or long word) or compute violations (fixed or floating point) and illegal instructions, cause core exceptions. Conditions triggered by the SEC, such as error correcting code (ECC), parity, watchdog, or system clock, cause system exceptions.
- An interrupt event occurs asynchronously to program flow. The interrupts are caused by input signals, timers, and other peripherals, as well as by an explicit software instruction.

System Event Controller (SEC)

Each SHARC+ core event controller receives interrupt requests from the system event controller (SEC). The SEC features include the following:

- Comprehensive system event source management, including interrupt enable, fault enable, priority, core mapping, and source grouping
- A distributed programming model where each system event source control and all status fields are independent of each other
- Determinism where all system events have the same propagation delay and provide unique identification of a specific system event source
- A completer control port that provides access to all SEC registers for configuration, status, and interrupt and fault services
- Global locking that supports a register level protection model to prevent writes to locked registers
- Fault management including fault action configuration, time out, external indication, and system reset

ADSP-SC596/ADSP-SC598

Trigger Routing Unit (TRU)

The trigger routing unit (TRU) provides system level sequence control without core intervention. The TRU maps trigger generators to trigger receivers. Trigger receivers can be configured to respond to triggers in various ways. Common applications enabled by the TRU include,

- Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes
- Software triggering
- Synchronization of concurrent activities

SECURITY FEATURES

The following sections describe the security features of the ADSP-SC596/ADSP-SC598 processors.

Arm TrustZone

The ADSP-SC596/ADSP-SC598 processors provide TrustZone technology that is integrated into the Arm Cortex-A55 processors. The TrustZone technology enables a secure state that is extended throughout the system fabric.

Cryptographic Hardware Accelerators

The ADSP-SC596/ADSP-SC598 processors support standards-based hardware accelerated encryption, decryption, authentication, and true random number generation.

Support for the hardware accelerated cryptographic ciphers includes the following:

- AES in ECB, CBC, ICM, and CTR modes with 128-bit, 192-bit, and 256-bit keys
- DES in ECB and CBC mode with 56-bit key
- 3DES in ECB and CBC mode with 3x 56-bit key
- ARC4 in stateful, stateless mode, up to 128-bit key

Support for the hardware accelerated hash functions includes the following:

- SHA-1
- SHA-2 with 224-bit and 256-bit digests
- HMAC transforms for SHA-1 and SHA-2
- MD5

Public key accelerator (PKA) is available to offload computation intensive public key cryptography operations.

Both a hardware-based nondeterministic random number generator and pseudorandom number generator are available.

Secure boot is also available with 224-bit and 256-bit elliptic curve digital signatures ensuring integrity and authenticity of the boot stream. Optionally, ensuring confidentiality through AES-128 encryption is available.

Employ secure debug to allow only trusted users to access the system with debug tools.

CAUTION

This product includes security features that can be used to protect embedded nonvolatile memory contents and prevent execution of unauthorized code. When security is enabled on this device (either by the ordering party or the subsequent receiving parties), the ability of Analog Devices to conduct failure analysis on returned devices is limited. Contact Analog Devices for details on the failure analysis limitations for this device.

System Protection Unit (SPU)

The system protection unit (SPU) guards against accidental or unwanted access to an MMR space of the peripheral by providing a write protection mechanism. The user can choose and configure the protected peripherals as well as configure which of the six system MMR requesters (Arm Cortex-A55, two SHARC+ cores, two memory DMA, and Arm® CoreSight™ debug) the peripherals are guarded against.

The SPU is also part of the security infrastructure. Along with providing write protection functionality, the SPU is employed to define which resources in the system are secure or nonsecure as well as block access to secure resources from nonsecure requesters.

System Memory Protection Unit (SMPU)

The system memory protection unit (SMPU) provides memory protection against read and/or write transactions to defined regions of memory. There are SMPU units in the ADSP-SC596/ADSP-SC598 processors for each memory space, except for SHARC L1.

The SMPU is also part of the security infrastructure. It allows the user to protect against arbitrary read and/or write transactions and allows regions of memory to be defined as secure and prevent nonsecure requesters from accessing those memory regions.

SECURITY FEATURES DISCLAIMER

Analog Devices does not guarantee that the Security Features described herein provide absolute security. ACCORDINGLY, ANALOG DEVICES HEREBY DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED WARRANTIES THAT THE SECURITY FEATURES CANNOT BE BREACHED, COMPROMISED, OR OTHERWISE CIRCUMVENTED AND IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY LOSS, DAMAGE, DESTRUCTION, OR RELEASE OF DATA, INFORMATION, PHYSICAL PROPERTY, OR INTELLECTUAL PROPERTY.

SAFETY FEATURES

The ADSP-SC596/ADSP-SC598 processors are designed to support functional safety applications. Whereas the level of safety is mainly dominated by the system concept, the following primitives are provided by the processors to build a robust safety concept.

Multiparity Bit Protected SHARC+ Core L1 Memories

In the SHARC+ core L1 memory space, whether SRAM or cache, multiple parity bits protect each word to detect the single event upsets that occur in all RAMs. Parity also protects the cache tags and BTB.

Error Correcting Code (ECC) Protected L2 Memories

Error correcting code (ECC) corrects single event upsets. A single error correct/double error detect (SEC/DED) code protects the L2 memory. By default, ECC is enabled, but it can be disabled on a per bank basis. Single-bit errors correct transparently. If enabled, dual-bit errors can issue a system event or fault. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

ECC and Parity Protected Arm L1/L2 Cache

The Arm Cortex-A55 core cache memory protection scheme features 1-bit error detection in the L1 instruction cache, as well as 2-bit error detection and 1-bit error correction in both the L1 data cache and L2 cache. Additionally, the corresponding cache tags are parity-protected.

Parity and ECC Protected Peripheral Memories

Parity protection is added to the following peripheral memories:

- ASRC
- IIR
- FIR
- USB
- CRYPTO
- EMAC
- MLB
- TRACE
- eMSI

CAN FD memory is ECC protected.

Cyclic Redundancy Check (CRC) Protected Memories

Whereas parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the CRC engines can protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2, and even Level 3 (L3) memories (DDR3, DDR3L). The processors feature four CRC engines that are embedded in the memory to memory DMA controllers.

CRC checksums can be calculated or compared automatically during memory transfers. Alternatively, single or multiple memory regions can be continuously scrubbed by a single DMA work unit as per DMA descriptor chain instructions. The CRC engine also protects data loaded during the boot process.

Signal Watchdogs

The 16 general-purpose (GP) timers feature modes to monitor off-chip signals. The watchdog period mode monitors whether external signals toggle with a period within an expected range.

The watchdog width mode monitors whether the pulse widths of external signals are within an expected range. Both modes help detect undesired toggling or lack of toggling of system level signals.

System Event Controller (SEC)

Besides system events, the system event controller (SEC) further supports fault management, including fault action configuration as timeout, internal indication by system interrupt, or external indication through the SYS_FAULT pin and system reset.

Memory Error Controller (MEC)

The memory error controller (MEC) manages memory parity/ECC errors and warnings from the cores and peripherals and sends out interrupts and triggers.

PROCESSOR PERIPHERALS

The following sections describe the peripherals of the ADSP-SC596/ADSP-SC598 processors.

Dynamic Memory Controller (DMC)

The 16-bit dynamic memory controller (DMC) interfaces to

- DDR3 (JESD79-3), 512 Mb to 8 Gb
- DDR3L (JESD79-3-1A), 512 Mb to 8 Gb

See [Table 6](#) for the DMC memory map.

Digital Audio Interface (DAI)

The processors support two identical digital audio interface (DAI) units. The DAI can connect various peripherals to any of the DAI pins.

The application code makes these connections using the signal routing unit (SRU), shown in [Figure 1](#).

The SRU is a matrix routing unit (or group of multiplexers) that enables the peripherals provided by each DAI instance to interconnect under software control. This functionality allows easy use of the DAI associated peripherals for a wider variety of applications by using a larger set of algorithms than is possible with nonconfigurable signal paths.

The DAI includes the peripherals described in the following sections (SPORTs, ASRC, S/PDIF, and PCG). DAI Pin Buffer 20 and DAI Pin Buffer 19 can change the polarity of the input signals.

ADSP-SC596/ADSP-SC598

The DAL_PINx pin buffers can also be used as GPIO pins. DAI input signals allow the triggering of interrupts on the rising edge, falling edge, or both.

See the Digital Audio Interface (DAI) chapter of the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#) for complete information on the use of the DAIs and SRUs.

DAI Routing Unit (DRU)

The DAI routing unit (DRU) provides flexibility when routing signals across the two DAI units. All DAI0 SRU source signals are available as source signals for the DAI1 SRU, and all DAI1 SRU source signals are available as source signals for the DAI0 SRU.

Serial Port (SPORT)

The processors feature eight synchronous serial ports (SPORTs), providing an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices. These devices include Analog Devices AD19xx and ADAU19xx families of audio codecs, analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). Two data lines, a clock, and a frame sync comprise a SPORT half. The data lines can be programmed to either transmit or receive data, and each data line has a dedicated DMA channel.

An individual SPORT module consists of two independently configurable SPORT halves with identical functionality. Two bidirectional data lines—primary (0) and secondary (1)—are available per SPORT half and are configurable as either transmitters or receivers. Therefore, each SPORT half permits two unidirectional streams into or out of the same SPORT. This bidirectional functionality provides greater flexibility for serial communications. For full-duplex configuration, one half SPORT provides two transmit data signals, and the other half SPORT provides two receive data signals. The frame sync and clock are shared.

Serial ports operate in the following six modes:

- Standard DSP serial mode
- Multichannel time division multiplexing (TDM) mode
- I²S mode
- Packed I²S mode
- Left justified mode
- Right justified mode

Asynchronous Sample Rate Converter (ASRC)

The asynchronous sample rate converter (ASRC) contains eight ASRC blocks. The ASRC provides up to 140 dB signal-to-noise ratio (SNR). The ASRC block performs synchronous or asynchronous sample rate conversion across independent stereo channels, without using internal processor resources. The ASRC blocks can also be configured to operate together to convert multichannel audio data without phase mismatches. Finally, the ASRC can clean up audio data from jittery clock sources such as the S/PDIF receiver.

S/PDIF-Compatible Digital Audio Receiver/Transmitter

The Sony/Philips Digital Interface Format (S/PDIF) is a standard audio data transfer format that allows the transfer of digital audio signals from one device to another. There are two S/PDIF transmit/receive blocks on the processor. The digital audio interface carries three types of information: audio data, nonaudio data (compressed data), and timing information.

The S/PDIF interface supports one stereo channel or compressed audio streams. The S/PDIF transmitter and receiver are AES3 compliant and support the sample rate from 24 kHz to 192 kHz. The S/PDIF receiver supports professional jitter standards.

The S/PDIF receiver/transmitter has no separate DMA channels. It receives audio data in serial format and converts it into a biphase encoded signal. The serial data input to the receiver/transmitter can be formatted as left justified, I²S, or right justified with word widths of 16, 18, 20, or 24 bits. The serial data, clock, and frame sync inputs to the S/PDIF receiver/transmitter are routed through the SRU. They can come from various sources, such as the SPORTs, external pins, and the precision clock generators (PCGs), and are controlled by the SRU control registers.

Precision Clock Generators (PCG)

The precision clock generators (PCG) consist of eight units located in the two DAI blocks. The PCG can generate a pair of signals (clock and frame sync) derived from a clock input signal (CLKIN, SCLK0, or DAI pin buffer). Both units are identical in functionality and operate independently of each other. The two signals generated by each unit are normally used as a serial bit clock/frame sync pair.

Pulse Density Modulation (PDM) Microphone Interface

The pulse density modulation (PDM) interface is used to convert digital PDM microphone data to I²S/TDM format. The microphone data in I²S/TDM format is then routed internally to the serial port/ASRC or externally via the DAI pins. The PDM microphone inputs include an internal decimation filter. Up to eight PDM microphones can be connected to the two dedicated digital microphone interfaces (one per DAI). Each PDM interface consists of one clock line and two data lines. Two microphones can share a single data line and be used along with a clock line to create a dual-input microphone port. Two dual-input lines can share a single clock line to support four microphone inputs.

Enhanced Parallel Peripheral Interface (EPPI)

The processors provide an enhanced parallel peripheral interface (EPPI) that supports data widths up to 24 bits. The EPPI supports direct connection to thin film transistor (TFT) LCD panels, parallel ADCs and DACs, video encoders and decoders, image sensor modules, and other general-purpose peripherals.

The features supported in the EPPI module include the following:

- Programmable data length of 8 bits, 10 bits, 12 bits, 14 bits, 16 bits, 18 bits, and 24 bits per clock
- Various framed, nonframed, and general-purpose operating modes. Frame syncs can be generated internally or can be supplied by an external device.
- ITU-656 status word error detection and correction for ITU-656 receive modes and ITU-656 preamble and status word decoding
- Optional packing and unpacking of data to/from 32 bits from/to 8 bits, 16 bits, and 24 bits. If packing/unpacking is enabled, configure endianness to change the order of packing/unpacking of bytes or words.
- RGB888 can be converted to RGB666 or RGB565 for transmit modes.
- Various deinterleaving/interleaving modes for receiving or transmitting 4:2:2 YCrCb data
- Configurable LCD data enable output available on Frame Sync 3

Universal Asynchronous Receiver/Transmitter (UART) Ports

The processors provide four full-duplex universal asynchronous receiver/transmitter (UART) ports, fully compatible with PC standard UARTs. Each UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA supported, asynchronous transfers of serial data. A UART port includes support for five to eight data bits as well as no parity, even parity, or odd parity.

Optionally, an additional address bit can be transferred to interrupt only addressed nodes in multidrop bus (MDB) systems. A frame is terminated by a configurable number of stop bits.

The UART ports support automatic hardware flow control through the clear to send (CTS) input and request to send (RTS) output with programmable assertion first in, first out (FIFO) levels.

To help support the Local Interconnect Network (LIN) protocols, a special command causes the transmitter to queue a break command of programmable bit length into the transmit buffer. Similarly, the number of stop bits can be extended by a programmable interframe space.

Serial Peripheral Interface (SPI) Ports

The processors have four industry-standard SPI-compatible ports that allow the processors to communicate with multiple SPI-compatible devices.

The baseline SPI peripheral is a synchronous, 4-wire interface consisting of two data pins, one device select pin, and a gated clock pin. The two data pins allow full-duplex operation to other SPI-compatible devices. An extra two (optional) data pins are provided to support quad-SPI operation. Enhanced modes of operation, such as flow control, fast mode, and dual-I/O

mode (DIOM), are also supported. DMA mode allows for transferring several words with minimal central processing unit (CPU) interaction.

With a range of configurable options, the SPI ports provide a glueless hardware interface with other SPI-compatible devices in master mode, slave mode, and multimaster environments. The SPI peripheral includes programmable baud rates, clock phase, and clock polarity. The peripheral can operate in a multimaster environment by interfacing with several other devices, acting as either a master device or a slave device. In a multimaster environment, the SPI peripheral uses open-drain outputs to avoid data bus contention. The flow control features enable slow slave devices to interface with fast master devices by providing an SPI ready pin (SPI_RDY), which flexibly controls the transfers.

The baud rate and clock phase and polarities of the SPI port are programmable. The port has integrated DMA channels for both transmit and receive data streams.

Octal Serial Peripheral Interface (OSPI) Port

The octal serial peripheral interface (OSPI) port provides an increased external memory data bus width (up to eight bits in parallel). The OSPI port supports dual data rate (DDR) modes of operation, which enable the transfer of up to 16 bits of data each clock cycle. The OSPI port provides overall data throughput and performance improvement, including faster boot time.

Features of the OSPI port include:

- Support for single-, dual-, quad-, or octal-I/O transfers
- Multiple modes of operation including direct and software triggered instruction generator (STIG)
- Support for execute in place (XIP): continuous mode
- Programmable page and block sizes
- Programmable write protected regions
- Programmable memory timing
- Support for DDR commands
- Support for PHY mode of operation to enable high-speed transfers
- Support for DQS to increase robustness of data sampling at higher speeds

Link Port (LP)

Two 8-bit wide link ports (LPs) can connect to the link ports of other DSPs or peripherals. Link ports are bidirectional and have eight data lines, an acknowledge line, and a clock line.

Link ports can operate in reduced pin mode, thereby reducing the number of pins required to interface between two processors. For example, two processors can be connected using the link port in 4-bit single data rate (SDR) and dual data rate (DDR) modes.

Ethernet Media Access Controller (EMAC)

The processor features an ethernet media access controller (EMAC): 10/100/1000 AVB Ethernet with precision time protocol (IEEE 1588).

ADSP-SC596/ADSP-SC598

The processors can directly connect to a network through embedded fast EMAC that supports 10Base-T (10 Mb/sec), 100Base-T (100 Mb/sec) and 1000Base-T (1 Gb/sec) operations.

Some standard features of the EMAC are as follows:

- Support of MII/RMII/RGMII protocols for external PHYs
- Full-duplex and half-duplex modes
- Media access management (in half-duplex operation)
- Flow control
- Station management, including the generation of MDC/MDIO frames for read/write access to PHY registers

Some advanced features of the EMAC include the following:

- Automatic checksum computation of IP header and IP payload fields of receive frames
- Independent 32-bit descriptor driven receive and transmit DMA channels
- Frame status delivery to memory through DMA, including frame completion semaphores for efficient buffer queue management in software
- Transmit DMA support for separate descriptors for MAC header and payload fields to eliminate buffer copy operations
- Convenient frame alignment modes
- 47 MAC management statistics counters with selectable clear on read behavior and programmable interrupts on half maximum value
- Advanced power management
- Magic packet detection and wakeup frame filtering
- Support for 802.3Q tagged VLAN frames
- Programmable MDC clock rate and preamble suppression

Audio Video Bridging (AVB) Support

The 10/100/1000 EMAC supports the following audio video bridging (AVB) features:

- Separate channels or queues for AV data transfer in 100 Mbps and 1000 Mbps modes
- IEEE 802.1-Qav specified credit-based shaper (CBS) algorithm for the additional transmit channels
- Configuring up to seven additional channels on the transmit and receive paths for AV traffic. Channel 0 is available by default and carries the legacy best effort Ethernet traffic on the transmit side.
- Separate DMA, transmit and receive FIFO for AVB latency class
- Programmable control to route received VLAN tagged non AV packets to channels or queues

Precision Time Protocol (PTP) IEEE 1588 Support

The IEEE 1588 standard is a precision clock synchronization protocol for networked measurement and control systems. The processors include hardware support for IEEE 1588 with an integrated precision time protocol synchronization engine (PTP_TSNC).

This engine provides hardware assisted time stamping to improve the accuracy of clock synchronization between PTP nodes. The main features of the engine include the following:

- Support for both IEEE 1588-2002 and IEEE 1588-2008 protocol standards
- Hardware assisted time stamping capable of up to 12.5 ns resolution
- Lock adjustment
- Automatic detection of IPv4 and IPv6 packets, as well as PTP messages
- Multiple input clock sources (SCLK0, RGMII, RMII, MII clock, and external clock)
- Programmable pulse per second (PPS) output
- Auxiliary snapshot to time stamp external events
- PTP time stamp offloading (auto send PTP frames)
- One step time stamp
- TSN-EST (enhancements to scheduling traffic) (802.1Qbv)
- Frame preemption support (802.3br, 802.1Qbu)
- Time-based scheduling (launch time)

Controller Area Network with Flexible Data-Rate (CAN FD)

There are two controller area network (CAN) modules. A CAN controller implements the CAN with flexible data-rate (CAN FD) and the CAN 2.0B protocol supporting both standard and extended message frames and long payloads up to 64 bytes, transferred at rates of up to 8 Mbps. This protocol is an asynchronous communications protocol used in both industrial and automotive control systems. The CAN protocol is well suited for control applications due to the capability to communicate reliably over a network. This is because the protocol incorporates CRC checking, message error tracking, and fault node confinement.

The CAN FD controller offers the following features:

- Flexible mailboxes configurable to store 0 to 8, 16, 32, or 64 bytes
- Dedicated receiver masks for each mailbox
- Flexible message buffers up to 64 buffers of 8 bytes length each, configurable as receive or transmit
- Programmable transmission priority scheme
- Transceiver delay compensation when transmitting CAN FD messages at faster data rates
- Memory read accesses error detection and correction

An additional crystal is not required to supply the CAN clock because it is derived from a system clock through a programmable divider.

Timers

The processors include several timers that are described in the following sections.

General-Purpose (GP) Timers (TIMER)

There is one general-purpose (GP) timer unit, providing 16 GP programmable timers. Each timer has an external pin that can be configured as PWM or timer output, as an input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can be synchronized to an external clock input on the TM_TMR[n] pins, an external TM_CLK input pin, or to the internal SCLK0.

These timer units can be used in conjunction with the UARTs and the CAN controller to measure the width of the pulses in the data stream to provide a software autobaud detect function for the respective serial channels.

The GP timers can generate interrupts to the processor core, providing periodic events for synchronization to either the system clock or to external signals. Timer events can also trigger other peripherals via the TRU (for instance, to signal a fault). Each timer can also be started and stopped by any trigger generator without core intervention.

Watchdog Timer (WDT)

Three on-chip software watchdog timers (WDT) can be used by the Arm Cortex-A55 and/or SHARC+ cores. A software watchdog can improve system availability by forcing the processors to a known state, via a general-purpose interrupt, or a fault, if the timer expires before being reset by software.

The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts down to zero from the programmed value, protecting the system from remaining in an unknown state where software that normally resets the timer stops running due to an external noise condition or software error.

General-Purpose Counters (CNT)

A 32-bit general-purpose counter (CNT) is provided that can operate in general-purpose up/down count modes and can sense 2-bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count direction is controlled by a level-sensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can input the push button signal of thumbwheel devices. All three CNT0 pins have a programmable debouncing circuit.

Internal signals forwarded to a GP timer enable the timer to measure the intervals between count events. Boundary registers enable auto-zero operation or simple system warning by interrupts when programmed count values are exceeded.

Housekeeping Analog-to-Digital Converter (HADC)

The housekeeping analog-to-digital converter (HADC) provides a general-purpose, multichannel, successive approximation ADC. The following baseline HADC features apply to all models:

- 12-bit ADC core with built in sample and hold
- Throughput rates up to 1 MSPS
- Single external reference with analog inputs between 0 V and 1.8 V
- Selectable ADC clock frequency including the ability to program a prescaler
- Adaptable conversion type; allows single or continuous conversion with option of autoscan
- Total of eight single-ended input channels that can be further extended to 15 channels by connecting the HADC_MUX_PIN_NAME pin(s) to an external channel multiplexer
- Autosequencing capability with up to a total of eight auto-conversions in a single session. Each conversion can be programmed to select one to fifteen input channels.
- 16 data registers (individually addressable) to store conversion values

USB 2.0 High Speed (HS) On the Go (OTG) Controller

The USB supports high speed/full speed/low speed (HS/FS/LS) USB2.0 on the go (OTG) and UTMI+ low pin interface (USBC).

The USB 2.0 OTG dual-role device controller provides a low cost connectivity solution in industrial applications, as well as consumer mobile devices such as cell phones, digital still cameras, and MP3 players. The USB 2.0 controller allows these devices to transfer data using a point to point USB connection without the need for a PC host. The module can operate in a traditional USB peripheral only mode as well as the host mode presented in the OTG supplement to the USB 2.0 specification.

The USB controller does not have an integrated on-chip PHY and must connect to an external PHY on the board through an USBC 8-bit interface supported by the USB controller.

Media Local Bus (MediaLB)

The automotive model has a Microchip MediaLB (MLB) device interface that allows the processors to function as a media local bus device. It includes support for both 3-pin and 6-pin media local bus protocols. The MLB 3-pin configuration supports speeds up to $1024 \times$ FS. The MLB 6-pin configuration supports speed of $2048 \times$ FS. The MLB also supports up to 64 logical channels with up to 468 bytes of data per MLB frame.

The MLB interface supports MOST25, MOST50, and MOST150 data rates and operates in device mode only.

2-Wire Controller Interface (TWI)

The processors include six 2-wire interface (TWI) modules that provide a simple exchange method of control data between multiple devices. The TWI module is compatible with the widely used I²C bus standard. The TWI module offers the capabilities

ADSP-SC596/ADSP-SC598

of simultaneous controller and target operation and support for both 7-bit addressing and multimedia data arbitration. The TWI interface utilizes two pins for transferring clock (TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400 kbps. The TWI interface pins are compatible with 3.3 V logic levels.

Additionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for easier control of various CMOS camera sensor devices.

General-Purpose I/O (GPIO)

Each general-purpose port pin can be individually controlled by manipulating the port control, status, and interrupt registers:

- The GPIO direction control register specifies the direction of each individual GPIO pin as input or output.
- GPIO control and status registers have a write-one-to-modify mechanism that allows any combination of individual GPIO pins to be modified in a single instruction, without affecting the level of any other GPIO pins.
- GPIO interrupt mask registers allow each individual GPIO pin to function as an interrupt to the processors. GPIO pins defined as inputs can be configured to generate hardware interrupts, whereas output pins can be triggered by software interrupts.
- GPIO interrupt sensitivity registers specify whether individual pins are level or edge sensitive and specify, if edge sensitive, whether the rising edge or both the rising and falling edges of the signal are significant.

Pin Interrupts

Every port pin on the processors can request interrupts in either an edge sensitive or a level sensitive manner with programmable polarity. Interrupt functionality is decoupled from GPIO operation. Eight system level interrupt channels (PINT0–PINT7) are reserved for this purpose. Each of these interrupt channels can manage up to 32 interrupt pins. The assignment from pin to interrupt is not performed on a pin by pin basis. Rather, groups of eight pins (half ports) are flexibly assigned to interrupt channels.

Every pin interrupt channel features a special set of 32-bit memory-mapped registers that enable half port assignment and interrupt management. This functionality includes masking, identification, and clearing of requests. These registers also enable access to the respective pin states and use of the interrupt latches, regardless of whether the interrupt is masked. Most control registers feature multiple MMR address entries to write one to set or write one to clear them individually.

Core Flags I/O Pins

The processor features 32 flag I/O pins (16 per SHARC+ core), which allow for external control and monitoring of the SHARC+ core FLAGS register. User code can write to bits in this register to be driven to pins configured as outputs, and code execution can be made conditional based on the settings of the pins configured as inputs.

Enhanced Mobile Storage Interface (eMSI)

The enhanced mobile storage interface (eMSI) controller acts as the host interface for embedded multimedia cards and secure digital (SD) memory cards. The eMSI controller has the following features:

- Supports a single eMMC device or SD memory
- Supports 1-bit and 4-bit SD modes
- Supports 1-bit, 4-bit, and 8-bit eMMC modes
- Supports 3.3 V I/O eMMC protocols, including eMMC 5.1
- 14-signal external interface with clock, command, and up to 8 data lines
- Integrated DMA controller

SYSTEM ACCELERATION

The following sections describe the system acceleration blocks of the ADSP-SC596/ADSP-SC598 processors.

Finite Impulse Response (FIR) Accelerator

The finite impulse response (FIR) accelerator consists of a 1024 word coefficient memory, a 1024 word deep delay line for the data, and four multiplier-accumulator (MAC) units. A controller manages the accelerator. The FIR accelerator runs at the SHARC core clock frequency. The FIR accelerator can access all memory spaces and can run concurrently with the other accelerators on the processor.

Infinite Impulse Response (IIR) Accelerator

The infinite impulse response (IIR) accelerator consists of a 1440 word coefficient memory for storage of biquad coefficients, a data memory for storing the intermediate data, and one MAC unit. A controller manages the accelerator. The IIR accelerator runs at the SHARC core clock frequency. The IIR accelerator can access all memory spaces and run concurrently with the other accelerators on the processor.

Note: There are four IIR accelerators per SHARC core.

SYSTEM DESIGN

The following sections provide an introduction to system design features and power supply issues.

Clock Management

The processors provide three operating modes, each with a different performance and power profile. Control of clocking to each of the processor peripherals reduces power consumption. The processors do not support any low power operation modes. Control of clocking to each of the processor peripherals can reduce the power consumption.

Reset Control Unit (RCU)

Reset is the initial state of the whole processor, or the core, and is the result of a hardware or software triggered event. In this state, all control registers are set to default values and functional units are idle. Exiting a full system reset begins with the core ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions put the system into an undefined state or cause resources to stall. This requirement is particularly important when the core resets (programs must ensure that there is no pending system activity involving the core when it is reset).

From a system perspective, reset is defined by both the reset target and the reset source.

The reset target is defined as the following:

- System reset—all functional units except the RCU are set to default states.
- Hardware reset—all functional units are set to default states without exception. History is lost.
- Core only reset—affects the core only. When in reset state, the core is not accessed by any bus requester.

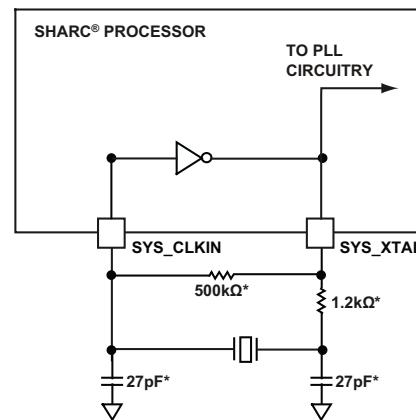
The reset source is defined as the following:

- System reset—can be triggered by software (writing to the RCU_CTL register) or by another functional unit, such as the dynamic power management (DPM) unit or any of the SEC, TRU, or emulator inputs.
- Hardware reset—the SYS_HWRST input signal asserts active (pulled down).
- Core only reset—affects only the core. The core is not accessed by any bus requester when in reset state.
- Trigger request (peripheral).

Clock Generation Unit (CGU)

The ADSP-SC596/ADSP-SC598 processors support three independent PLLs. Each PLL is part of a clock generation unit (CGU). Each CGU can be either driven externally by the same clock source or driven by separate sources, thus providing flexibility in determining the internal clocking frequencies for each clock domain.

Frequencies generated by each CGU are derived from a common multiplier with different divider values available for each output.


The CGU generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to define the PLLCLK frequency.

Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks, the DDR3/DDR3L clock (DCLK), and the output clock (OCLK). For more information on clocking, see the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#).

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value and the PLL logic executes the changes to ensure smooth transitions from the current conditions to the new conditions.

System Crystal Oscillator

The processor can be clocked by an external crystal (see [Figure 6](#)), a sine wave input, or a buffered, shaped clock derived from an external clock oscillator. If using an external clock, it must be compatible with the $V_{IHCLKIN}$ and $V_{ILCLKIN}$ specifications and must not be halted, changed, or operated below the specified frequency during normal operation (see the [Operating Conditions](#) section). This signal is connected to the SYS_CLKINx pin of the processor. When using an external clock, the SYS_XTALx pin must be left unconnected. Alternatively, because the processor includes an on-chip oscillator circuit, an external crystal can be used.

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. ANALYZE CAREFULLY. VALID FREQUENCY RANGE IS 20 MHz TO 30 MHz FOR SYS_CLKIN.

Figure 6. External Crystal Connection

For fundamental frequency operation, use the circuit shown in [Figure 6](#). A parallel resonant, fundamental frequency, microprocessor grade crystal is connected across the SYS_CLKINx pin and the SYS_XTALx pin.

The two capacitors and the series resistor, shown in [Figure 6](#), fine tune phase and amplitude of the sine frequency. The capacitor and resistor values shown in [Figure 6](#) are typical values only. The capacitor values are dependent upon the load capacitance recommendations of the crystal manufacturer and the physical layout of the printed circuit board (PCB). The resistor value depends on the drive level specified by the crystal manufacturer. The user must verify the customized values based on careful investigations on multiple devices over the required temperature range.

Clock Distribution Unit (CDU)

The three clock generation units each provide outputs that feed a clock distribution unit (CDU). The clock outputs CLKO0–CLKO12 are connected to various targets. For more information, refer to the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#).

ADSP-SC596/ADSP-SC598

Clock Out/External Clock

The SYS_CLKOUT output pin has programmable options to output divided down versions of the on-chip clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_CLKIN0 input. Refer to the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#) to change the default mapping of clocks.

Booting

The processors have several mechanisms for automatically loading internal and external memory after a reset. The boot mode is defined by the SYS_BMODE[n] input pins. There are two categories of boot modes. In flash boot modes, the processors actively load data from serial memories. In external host boot modes, the processors receive data over a serial interface from an external host device.

The boot modes are shown in [Table 7](#). These modes are implemented by the SYS_BMODE[n] bits of the reset configuration register and are sampled during power-on resets and software initiated resets.

In the ADSP-SC596/ADSP-SC598 processors, the Arm Cortex-A55 (Core 0) controls the boot process, including loading all internal and external memory. The option for secure boot is available on all models.

Table 7. Boot Modes

SYS_BMODE[n] Setting	Boot Mode
000	No boot
001	SPI2 flash
010	External SPI2 host
011	External UART0 host
100	External LP0 host
101	Octal SPI flash ¹
110	eMSI boot (eMMC)

¹Default power on boot through Octal SPI is supported by OSPI signals in Port C/Port D.

Thermal Monitoring Unit (TMU)

The thermal monitoring unit (TMU) provides on-chip temperature measurement for applications that require substantial power consumption. The TMU is integrated into the processor die and digital infrastructure using an MMR-based system access to measure the die temperature variations in real-time.

TMU features include the following:

- On-chip temperature sensing
- Programmable over temperature and under temperature limits
- Programmable conversion rate
- Averaging feature available

Power Supplies

The processors have separate power supply connections for

- Internal (VDD_INT)
- External (VDD_EXT)
- External (VDD_REF)
- HADC/TMU (VDD_ANA)
- DMC (VDD_DMC)
- PLL (VDD_PLL)

All power supplies must meet the specifications provided in the [Operating Conditions](#) section. All external supply pins must be connected to the same power supply.

Power Management

As shown in [Table 8](#), the processors support six different power domains, which maximizes flexibility while maintaining compliance with industry standards and conventions.

The power dissipated by a processor is largely a function of the clock frequency and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation.

Table 8. Power Domains

Power Domain	V _{DD} Range
All Internal Logic	V _{DD} _INT
DDR3/DDR3L	V _{DD} _DMC
HADC/TMU	V _{DD} _ANA
SYS_CLKIN0/1	V _{DD} _REF ¹
PLL0/1	V _{DD} _PLL ²
All Other I/O (Includes SYS, JTAG, and Ports Pins)	V _{DD} _EXT

¹V_{DD}_REF requires a minimum of 10 nF and 100 nF decoupling capacitance to meet source/sink requirements.

²Connect V_{DD}_PLL to V_{DD}_INT. See [ADSP-SC596/ADSP-SC598 Designer Quick Reference](#) for additional details.

Power-Up and Power-Down Sequencing

At all times (including during power-up/power-down sequencing), the VDD_REF, VDD_ANA, and VDD_EXT supplies must stay within the V_{DELTA_EXT_REF} specification listed in the [Operating Conditions](#) table. SYS_XTAL0 and SYS_XTAL1 oscillations (SYS_CLKIN0 and SYS_CLKIN1) start when power is applied to the VDD_REF pins. The rising edge of SYS_HWRST initiates the PLL locking sequence. The rising edge of SYS_HWRST must occur after all voltage supplies and SYS_CLKIN0 and SYS_CLKIN1 oscillations are valid. For further details and information, see the [Power-Up Reset Timing](#) section.

Target Board JTAG Emulator Connector

The Analog Devices DSP tools product line of JTAG emulators uses the IEEE 1149.1 JTAG test access port of the processors to monitor and control the target board processor during emulation. The Analog Devices DSP tools product line of JTAG

emulators provides emulation at full processor speed, allowing inspection and modification of memory, registers, and processor stacks. The processor JTAG interface ensures the emulator does not affect target system loading or timing.

For information on JTAG emulator operation, see the appropriate emulator hardware user's guide at [SHARC Processors Software and Tools](#).

SYSTEM DEBUG

The processors include various features that allow easy system debug. These are described in the following sections.

System Watchpoint Unit (SWU)

The system watchpoint unit (SWU) is a single module that connects to a single system bus and provides transaction monitoring. One SWU is attached to the bus going to each system completer. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently but share common event (for example, interrupt and trigger) outputs.

Debug Access Port (DAP)

The debug access port (DAP) provides IEEE 1149.1 JTAG interface support through the JTAG debug. The DAP provides an optional instrumentation trace for both the core and system. It provides a trace stream that conforms to *MIPI System Trace Protocol version 2 (STPv2)*.

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including an integrated development environment, evaluation products, emulators, and a variety of software add-ins.

Integrated Development Environment

For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers the CrossCore® Embedded Studio (CCES) integrated development environment (IDE).

CCES is based on the Eclipse framework. Supporting most Analog Devices processor families, CCES is the IDE of choice for processors, including multicore devices.

CCES seamlessly integrates available software add-ins to support real-time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information, visit www.analog.com/cces.

EZ-KIT Evaluation Systems

For processor evaluation, Analog Devices provides EZ-KIT® evaluation systems, which are comprised of a System on Module (SOM) board and a SOM carrier board.

The SOM board (EV-SC598-SOM) is small and low-cost, featuring the audio processor, SDRAM and QSPI flash memories, FTDI USB-to-UART, and USB power. SOM boards also include

a JTAG debug connection such that they can be used standalone for debug/development using either the ADZS-ICE-2000 or ADZS-ICE-1000 in-circuit emulator (ICE).

SOM carrier boards (EV-SOMCRR-EZKIT or EV-SOMCRR-EZLITE) come with a power supply and feature high-speed connectors for the SOM, a comprehensive set of peripherals, and an on-board emulator. The USB controller on the carrier board connects to the USB port of the user's PC, enabling CCES to emulate the on-board processor in-circuit. This permits users to download, execute, and debug programs, as well as in-circuit program the on-board flash memory device to store user-specific boot code, thus enabling standalone operation.

Each EZ-KIT purchased includes an evaluation license for CCES. The CCES evaluation license type restricts CCES features to specific evaluation systems. With the full CCES license type (sold separately), engineers can develop software for any of the CCES-supported evaluation boards (including the SOM when used standalone or when connected to a different carrier board) or any custom system designed around supported Analog Devices processors. The full CCES license type also enables higher-performance debug capabilities via JTAG using an ICE.

For further information, see:

- www.analog.com/cces
- www.analog.com/EV-SC598-SOM
- www.analog.com/EV-SOMCRR-EZKIT
- www.analog.com/EV-SOMCRR-EZLITE

Software Add-Ins for CCES

Analog Devices offers software add-ins which seamlessly integrate with CCES to extend the capabilities and reduce development time. Add-ins include BSPs for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CCES IDE upon add-in installation.

Board Support Packages (BSPs) for Evaluation Hardware

Software support for the EZ-KIT evaluation systems is provided by software add-ins called board support packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated SOM product.

Middleware Packages

Analog Devices and their development partners provide a range of software stacks which offer additional software functionality for the supported peripherals. This includes TCP/IP, USB, filesystem, EAVB, and Dante. For more information, see the [Operating Systems and Middleware](#) page.

RTOS and Operating Systems

Analog Devices provides RTOS and operating systems for the cores of its DSP processors. FreeRTOS is available for both the SHARC and Arm cores of the ADSP-SC5xx/ADSP-215xx

ADSP-SC596/ADSP-SC598

processors. Embedded Linux is available for the ARM core of the ADSP-SC5xx family of processors. For more information, see the [Operating Systems and Middleware](#) page.

Algorithmic Modules

To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with CCES. For more information, visit the [Design Center](#).

Designing an Emulator-Compatible DSP Board (Target)

For embedded system test and debug, Analog Devices provides a family of emulators. On each JTAG DSP, Analog Devices supplies an IEEE 1149.1 JTAG test access port (TAP). In-circuit emulation is facilitated by use of this JTAG interface. The emulator accesses the internal features of the processor via the TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers.

The processor must be halted to send data and commands, but after an operation is completed by the emulator, the DSP system is set to run at full speed with no impact on system timing. The emulators require the target board to include a header that supports connection of the JTAG port of the DSP to the emulator.

For details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, see [Analog Devices JTAG Emulation Technical Reference \(EE-68\)](#).

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-SC596/ADSP-SC598 architecture and functionality. For detailed information on the core architecture and instruction set, refer to the [SHARC+ Core Programming Reference](#).

RELATED SIGNAL CHAINS

A signal chain is a series of signal conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together. A tool for viewing relationships between specific applications and related components is available at www.analog.com/circuits.

The application signal chains page in the Circuits from the Lab® site (www.analog.com/circuits) provides the following:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

ADSP-SC596/ADSP-SC598 DETAILED SIGNAL DESCRIPTIONS

Table 9 provides a detailed description of each pin.

Table 9. ADSP-SC596/ADSP-SC598 Detailed Signal Descriptions

Signal Name	Direction	Description
C1_FLG[n]	InOut	Core 1 FLAGS I/O n. External pins associated with the core FLAGS register on SHARC+ core 1.
C2_FLG[n]	InOut	Core 2 FLAGS I/O n. External pins associated with the core FLAGS register on SHARC+ core 2.
CANFD_RX	Input	Receive. Typically an external CAN transceiver RX output.
CANFD_TX	Output	Transmit. Typically an external CAN transceiver TX input.
CNT_DG	Input	Count Down and Gate. Depending on the mode of operation, this input acts either as a count down signal or a gate signal. Count Down—this input causes the GP counter to decrement. Gate—stops the GP counter from incrementing or decrementing.
CNT_UD	Input	Count Up and Direction. Depending on the mode of operation this input acts either as a count up signal or a direction signal. Count Up—this input causes the GP counter to increment. Direction—selects whether the GP counter is incrementing or decrementing.
CNT_ZM	Input	Count Zero Marker. Input that connects to the zero marker output of a rotary device or detects the pressing of a pushbutton.
DAI_PIN[nn]	InOut	Pin n. The digital applications interface (DAI0) connects various peripherals to any of the DAI0_PINxx pins. Programs make these connections using the signal routing unit (SRU/DRU). DRU allows routing of any signal across the DAIs.
DMC_A[nn]	Output	Address n. Address bus.
DMC_BA[n]	Output	Bank Address Input n. Defines which internal bank an activate, read, write, or precharge command is applied to on the dynamic memory. Bank Address n also defines which mode registers (MR, EMR, EMR2, and/or EMR3) load during the load mode register command.
DMC_CAS	Output	Column Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the CAS input of dynamic memory.
DMC_CK	Output	Clock. Outputs DCLK to external dynamic memory.
DMC_CK	Output	Clock (Complement). Complement of DMC_CK.
DMC_CKE	Output	Clock Enable. Active high clock enables. Connects to the CKE input of the dynamic memory.
DMC_CS[n]	Output	Chip Select n. Commands are recognized by the memory only when this signal is asserted.
DMC_DQ[nn]	InOut	Data n. Bidirectional data bus.
DMC_LDM	Output	Data Mask for Lower Byte. Mask for DMC_DQ07:DMC_DQ00 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_LDQS	InOut	Data Strobe for Lower Byte. DMC_DQ07:DMC_DQ00 data strobe. Output with write data. Input with read data. Can be single-ended or differential depending on register settings.
DMC_LDQS	InOut	Data Strobe for Lower Byte (Complement). Complement of DMC_LDQS. Not used in single-ended mode.
DMC_ODT	Output	On Die Termination. Enables dynamic memory termination resistances when driven high (assuming the memory is properly configured). ODT is enabled or disabled regardless of read or write commands.
DMC_RAS	Output	Row Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the RAS input of dynamic memory.
DMC_RESET	Output	Reset.
DMC_RZQ	InOut	External Calibration Resistor Connection.
DMC_UDM	Output	Data Mask for Upper Byte. Mask for DMC_DQ15:DMC_DQ08 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_UDQS	InOut	Data Strobe for Upper Byte. DMC_DQ15:DMC_DQ08 data strobe. Output with write data. Input with read data. Can be single-ended or differential depending on register settings.
DMC_UDQS	InOut	Data Strobe for Upper Byte (Complement). Complement of DMC_UDQS. Not used in single-ended mode.

ADSP-SC596/ADSP-SC598

Table 9. ADSP-SC596/ADSP-SC598 Detailed Signal Descriptions (Continued)

Signal Name	Direction	Description
DMC_VREF[n]	Input	Voltage Reference. Connects to half of the VDD_DMC voltage.
DMC_WE	Output	Write Enable. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the \overline{WE} input of dynamic memory.
EMSI0_CD	Input	EMSI0 Card Detect. Connects to the card detect output of an SD device. Connect to GND when an eMMC device is connected.
EMSI0_CLK	Output	EMSI0 Clock. Clock signal applied to the connected device from the eMSI.
EMSI0_CMD	InOut	EMSI0 Command. Sends commands to and receives responses from the connected device.
EMSI0_D[n]	InOut	Data n. Bidirectional data bus.
EMSI0_LED_CONTROL	Output	EMSI0 LED Control. Signal that cautions that the SD card must not be removed while it is being accessed.
EMSI0_RST	Output	EMSI0 Reset. eMMC device reset signal.
EMSI0_WP	Input	EMSI0 Write Protect. Only applicable for the SD card and must be driven directly from the write protect physical switch of the SD device. Connect to VDD_EXT when an eMMC device is connected.
ETH_COL	Input	MII Collision Detect. Collision detect input signal valid only in MII.
ETH_CRS	Input	EMAC0: MII Carrier Sense. Asserted by the PHY when either the transmit or receive medium is not idle. Deasserted when both are idle. This signal is not used in RMII/RGMII modes. EMAC1: RMII Carrier Sense (CRS) and Receive Data Valid (RXDV). Multiplexed on alternate clock cycles. CRS—asserted by the PHY when either the transmit or receive medium is not idle. Deasserted when both are idle. RXDV—asserted by the PHY when the data on RXDn is valid.
ETH_MDC	Output	Management Channel Clock. Clocks the MDC input of the PHY for RMII/RGMII.
ETH_MDIO	InOut	Management Channel Serial Data. Bidirectional data bus for PHY control for RMII/RGMII.
ETH_PHY_INT	Input	PHY Interrupt. This signal can be connected to the interrupt output signal from the PHY. PHY interrupt inside the EMAC module is generated when a rising edge is detected on this pin.
ETH_PTPAUX_MCG_IN[n]	Input	PTP Auxiliary/Media Clock Generation Trigger Input. Assert this signal to take an auxiliary snapshot of the time and store it in the auxiliary time stamp FIFO or capture the presentation time by sampling at positive, negative, or both edges of the trigger input when operating in media clock generation mode. Note that the PTP auxiliary and media clock generation modes are mutually exclusive.
ETH_PTPCLKIN[n]	Input	PTP Clock Input. Optional external PTP clock input.
ETH_PTPPPS[n]	Output	PTP Pulse Per Second Output. When the advanced time stamp feature enables, this signal is asserted based on the PPS mode selected. Otherwise, this signal is asserted every time the seconds counter is incremented.
ETH_REFCLK	Input	Reference Clock. Externally supplied Ethernet clock.
ETH_RXCLK_REFCLK	Input	RXCLK (10/100/1000) or REFCLK (10/100).
ETH_RXCTL_CRSRX_DV	InOut	RXCTL (10/100/1000) or CRSRX_DV (10/100). In RGMII mode, RXCTL multiplexes receive data valid and receiver error. In RMII mode, CRSRX_DV is carrier sense and receive data valid (CRS_DV), multiplexed on alternating clock cycles. In MII mode, CRSRX_DV is receive data valid (RX_DV), asserted by the PHY when the data on ETH_RXD[n] is valid.
ETH_RXD[n]	Input	Receive Data n. Receive data bus.
ETH_RXERR	Input	Receive Error.
ETH_TXCLK	Input	Reference Clock. Externally supplied Ethernet clock.
ETH_TXCTL_TXEN	Output	TXCTL (10/100/1000) or TXEN (10/100).
ETH_TXD[n]	Output	Transmit Data n. Transmit data bus.
ETH_TXEN	Output	Transmit Enable. When asserted, this signal indicates the data on ETH_TXD[n] is valid.
HADC_EOC_DOUT	Output	End of Conversion/Serial Data Out. Transitions high for one cycle of the HADC internal clock at the end of every conversion. Alternatively, HADC serial data out can be seen by setting the appropriate bit in HADC_CTL.

Table 9. ADSP-SC596/ADSP-SC598 Detailed Signal Descriptions (Continued)

Signal Name	Direction	Description
HADC_MUX[n]	Output	Controls to External Multiplexer. Allows additional input channels when connected to an external multiplexer.
HADC_VIN[n]	Input	Analog Input at Channel n. Analog voltage inputs for digital conversion.
HADC_VREFN	Input	Ground Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
HADC_VREFP	Input	External Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
JTG_TCK	Input	JTAG Clock. JTAG test access port clock.
JTG_TDI	Input	JTAG Serial Data In. JTAG test access port data input.
JTG_TDO	Output	JTAG Serial Data Out. JTAG test access port data output.
JTG_TMS	Input	JTAG Mode Select. JTAG test access port mode select.
JTG_TRST	Input	JTAG Reset. JTAG test access port reset.
LP_ACK	InOut	Acknowledge. Provides handshaking. When the link port is configured as a receiver, ACK is an output. When the link port is configured as a transmitter, ACK is an input.
LP_CLK	InOut	Clock. When the link port is configured as a receiver, CLK is an input. When the link port is configured as a transmitter, CLK is an output.
LP_D[n]	InOut	Data n Data bus. Input when receiving, output when transmitting.
MLB_CLK	Input	Single Ended Clock.
MLB_CLKN	Input	Differential Clock (-).
MLB_CLKOUT	Output	Single Ended Clock Out.
MLB_CLKP	Input	Differential Clock (+).
MLB_DAT	InOut	Single Ended Data.
MLB_DATN	InOut	Differential Data (-).
MLB_DATP	InOut	Differential Data (+).
MLB_SIG	InOut	Single Ended Signal.
MLB_SIGN	InOut	Differential Signal (-).
MLB_SIGP	InOut	Differential Signal (+).
OSPI_CLK	Output	Clock Output. SPI master clock output.
OSPI_D2	InOut	Data 2. Transfers serial data in quad and octal mode.
OSPI_D3	InOut	Data 3. Transfers serial data in quad and octal mode.
OSPI_D4	InOut	Data 4. Transfers serial data in octal mode.
OSPI_D5	InOut	Data 5. Transfers serial data in octal mode.
OSPI_D6	InOut	Data 6. Transfers serial data in octal mode.
OSPI_D7	InOut	Data 7. Transfers serial data in octal mode.
OSPI_DQS	Input	Data Strobe. Data strobe input from an external flash device.
OSPI_MISO	InOut	Master In, Slave Out. Transfers serial data. Operates in the same direction as OSPI_MOSI in dual, quad, and octal modes.
OSPI_MOSI	InOut	Master Out, Slave Input. Transfers serial data. Operates in the same direction as SPI_MISO in dual, quad, and octal modes.
OSPI_SEL[n]	Output	Slave Select Output n. Used in master mode to enable the desired slave.
PPI_CLK	InOut	Clock. Input in external clock mode, output in internal clock mode.
PPI_D[nn]	InOut	Data n. Bidirectional data bus.
PPI_FS1	InOut	Frame Sync 1 (HSYNC). Behavior depends on EPPI mode. See the EPPI chapter of the ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference for more details.
PPI_FS2	InOut	Frame Sync 2 (VSYNC). Behavior depends on EPPI mode. See the EPPI chapter of the ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference for more details.
PPI_FS3	InOut	Frame Sync 3 (FIELD). Behavior depends on EPPI mode. See the EPPI chapter of the ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference for more details.

ADSP-SC596/ADSP-SC598

Table 9. ADSP-SC596/ADSP-SC598 Detailed Signal Descriptions (Continued)

Signal Name	Direction	Description
P_[nn]	InOut	Position n. General-purpose input/output. See the GP Ports chapter of the ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference for more details.
SPI_CLK	InOut	Clock. Input in slave mode, output in master mode.
SPI_D2	InOut	Data 2. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_D3	InOut	Data 3. Transfers serial data in quad mode. Open-drain when ODM mode is enabled.
SPI_MISO	InOut	Master In, Slave Out. Transfers serial data. Operates in the same direction as SPI_MOSI in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_MOSI	InOut	Master Out, Slave In. Transfers serial data. Operates in the same direction as SPI_MISO in dual and quad modes. Open-drain when ODM mode is enabled.
SPI_RDY	InOut	Ready. Optional flow signal. Output in slave mode, input in master mode.
<u>SPI_SEL[n]</u>	Output	Slave Select Output n. Used in master mode to enable the desired slave.
<u>SPI_SS</u>	Input	Slave Select Input. Slave mode—acts as the slave select input. Master mode—optionally serves as an error detection input for the SPI when there are multiple masters.
SPT_ACLK	InOut	Channel A Clock. Data and frame sync are driven or sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_AD0	InOut	Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AD1	InOut	Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_AFS	InOut	Channel A Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_ATDV	Output	Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SPT_BCLK	InOut	Channel B Clock. Data and frame sync are driven or sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_BD0	InOut	Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BD1	InOut	Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data or as an input to receive serial data.
SPT_BFS	InOut	Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_BTDV	Output	Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.
SYS_BMODE[n]	Input	Boot Mode Control n. Selects the boot mode of the processor.
SYS_CLKIN0	Input	Clock/Crystal Input.
SYS_CLKIN1	Input	Clock/Crystal Input.
SYS_CLKOUT	Output	Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference for more details.
SYS_FAULT	InOut	Active-High Fault Output. Indicates internal faults or senses external faults depending on the operating mode.
<u>SYS_FAULT</u>	InOut	Active-Low Fault Output. Indicates internal faults or senses external faults depending on the operating mode.
SYS_HWRST	Input	Processor Hardware Reset Control. Resets the device when asserted.
SYS_RESOUT	Output	Reset Output. Indicates the device is in the reset state.
SYS_XTAL0	Output	Crystal Output.
SYS_XTAL1	Output	Crystal Output.
TM_ACI[n]	Input	Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.
TM_ACLK[n]	Input	Alternate Clock n. Provides an additional time base for an individual timer.

Table 9. ADSP-SC596/ADSP-SC598 Detailed Signal Descriptions (Continued)

Signal Name	Direction	Description
TM_CLK	Input	Clock. Provides an additional global time base for all GP timers.
TM_TMR[n]	InOut	Timer n. The main input/output signal for each timer.
TRACE_CLK	Output	Trace Clock. Clock output.
TRACE_D[nn]	Output	Trace Data n. Unidirectional data bus.
TWI_SCL	InOut	Serial Clock. Clock output when controller, clock input when target.
TWI_SDA	InOut	Serial Data. Receives or transmits data.
UART_CTS	Input	Clear to Send. Flow control signal.
UART_RTS	Output	Request to Send. Flow control signal.
UART_RX	Input	Receive. Receives input. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
UART_TX	Output	Transmit. Transmits output. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
USBC_CLK	Input	USBC Clock.
USBC_DATA[n]	InOut	USBC Data.
USBC_DIR	Input	USBC Data Bus Control. Controls the direction of data bus.
USBC_NXT	Input	USBC Next Data Control.
USBC_STOP	Output	USBC Stop Output Control.

ADSP-SC596/ADSP-SC598

400-BALL BGA_ED SIGNAL DESCRIPTIONS

The processor pin definitions are shown in [Table 10](#) for the 400-ball BGA_ED package. The columns in this table provide the following information:

- The signal name column includes the signal name for every pin and the GPIO multiplexed pin function, where applicable.
- The description column provides a descriptive name for each signal.
- The port column shows whether or not a signal is multiplexed with other signals on a GPIO port pin.

- The pin name column identifies the name of the package pin (at power on reset) on which the signal is located (if a single function pin) or is multiplexed (if a GPIO pin).
- The DAI pins and their associated signal routing units (SRUs) connect inputs and outputs of the DAI peripherals (SPORT, ASRC, S/PDIF, and PCG). See the Digital Audio Interface (DAI) chapter of the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#) for complete information on the use of the DAI and SRUs.

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions

Signal Name	Description	Port	Pin Name
C1_FLG00	SHARC+ Core 1 FLAGS I/O 0	A	PA_12
C1_FLG01	SHARC+ Core 1 FLAGS I/O 1	H	PH_02
C1_FLG02	SHARC+ Core 1 FLAGS I/O 2	B	PB_03
C1_FLG03	SHARC+ Core 1 FLAGS I/O 3	B	PB_02
C1_FLG04	SHARC+ Core 1 FLAGS I/O 4	I	PI_03
C1_FLG05	SHARC+ Core 1 FLAGS I/O 5	I	PI_04
C1_FLG06	SHARC+ Core 1 FLAGS I/O 6	F	PF_02
C1_FLG07	SHARC+ Core 1 FLAGS I/O 7	F	PF_01
C1_FLG08	SHARC+ Core 1 FLAGS I/O 8	E	PE_12
C1_FLG09	SHARC+ Core 1 FLAGS I/O 9	F	PF_09
C1_FLG10	SHARC+ Core 1 FLAGS I/O 10	F	PF_03
C1_FLG11	SHARC+ Core 1 FLAGS I/O 11	D	PD_03
C1_FLG12	SHARC+ Core 1 FLAGS I/O 12	F	PF_13
C1_FLG13	SHARC+ Core 1 FLAGS I/O 13	F	PF_12
C1_FLG14	SHARC+ Core 1 FLAGS I/O 14	G	PG_09
C1_FLG15	SHARC+ Core 1 FLAGS I/O 15	I	PI_05
C2_FLG00	SHARC+ Core 2 FLAGS I/O 0	I	PI_01
C2_FLG01	SHARC+ Core 2 FLAGS I/O 1	I	PI_02
C2_FLG02	SHARC+ Core 2 FLAGS I/O 2	F	PF_06
C2_FLG03	SHARC+ Core 2 FLAGS I/O 3	F	PF_07
C2_FLG04	SHARC+ Core 2 FLAGS I/O 4	F	PF_10
C2_FLG05	SHARC+ Core 2 FLAGS I/O 5	F	PF_11
C2_FLG06	SHARC+ Core 2 FLAGS I/O 6	G	PG_13
C2_FLG07	SHARC+ Core 2 FLAGS I/O 7	E	PE_11
C2_FLG08	SHARC+ Core 2 FLAGS I/O 8	F	PF_08
C2_FLG09	SHARC+ Core 2 FLAGS I/O 9	D	PD_14
C2_FLG10	SHARC+ Core 2 FLAGS I/O 10	D	PD_02
C2_FLG11	SHARC+ Core 2 FLAGS I/O 11	G	PG_12
C2_FLG12	SHARC+ Core 2 FLAGS I/O 12	F	PF_14
C2_FLG13	SHARC+ Core 2 FLAGS I/O 13	E	PE_13
C2_FLG14	SHARC+ Core 2 FLAGS I/O 14	G	PG_10
C2_FLG15	SHARC+ Core 2 FLAGS I/O 15	G	PG_11
CANFD0_RX	CANFD0 Receive	F	PF_15
CANFD0_TX	CANFD0 Transmit	G	PG_00
CANFD1_RX	CANFD1 Receive	G	PG_01
CANFD1_TX	CANFD1 Transmit	G	PG_02

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
CNT0_DG	CNT0 Count Down and Gate	B	PB_05
CNT0_UD	CNT0 Count Up and Direction	B	PB_03
CNT0_ZM	CNT0 Count Zero Marker	B	PB_04
DAI0_PIN01	DAI0 Pin 1	Not Muxed	DAI0_PIN01
DAI0_PIN02	DAI0 Pin 2	Not Muxed	DAI0_PIN02
DAI0_PIN03	DAI0 Pin 3	Not Muxed	DAI0_PIN03
DAI0_PIN04	DAI0 Pin 4	Not Muxed	DAI0_PIN04
DAI0_PIN05	DAI0 Pin 5	Not Muxed	DAI0_PIN05
DAI0_PIN06	DAI0 Pin 6	Not Muxed	DAI0_PIN06
DAI0_PIN07	DAI0 Pin 7	Not Muxed	DAI0_PIN07
DAI0_PIN08	DAI0 Pin 8	Not Muxed	DAI0_PIN08
DAI0_PIN09	DAI0 Pin 9	Not Muxed	DAI0_PIN09
DAI0_PIN10	DAI0 Pin 10	Not Muxed	DAI0_PIN10
DAI0_PIN11	DAI0 Pin 11	Not Muxed	DAI0_PIN11
DAI0_PIN12	DAI0 Pin 12	Not Muxed	DAI0_PIN12
DAI0_PIN13	DAI0 Pin 13	Not Muxed	DAI0_PIN13
DAI0_PIN14	DAI0 Pin 14	Not Muxed	DAI0_PIN14
DAI0_PIN15	DAI0 Pin 15	Not Muxed	DAI0_PIN15
DAI0_PIN16	DAI0 Pin 16	Not Muxed	DAI0_PIN16
DAI0_PIN17	DAI0 Pin 17	Not Muxed	DAI0_PIN17
DAI0_PIN18	DAI0 Pin 18	Not Muxed	DAI0_PIN18
DAI0_PIN19	DAI0 Pin 19	Not Muxed	DAI0_PIN19
DAI0_PIN20	DAI0 Pin 20	Not Muxed	DAI0_PIN20
DAI1_PIN01	DAI1 Pin 1	Not Muxed	DAI1_PIN01
DAI1_PIN02	DAI1 Pin 2	Not Muxed	DAI1_PIN02
DAI1_PIN03	DAI1 Pin 3	Not Muxed	DAI1_PIN03
DAI1_PIN04	DAI1 Pin 4	Not Muxed	DAI1_PIN04
DAI1_PIN05	DAI1 Pin 5	Not Muxed	DAI1_PIN05
DAI1_PIN06	DAI1 Pin 6	Not Muxed	DAI1_PIN06
DAI1_PIN07	DAI1 Pin 7	Not Muxed	DAI1_PIN07
DAI1_PIN08	DAI1 Pin 8	Not Muxed	DAI1_PIN08
DAI1_PIN09	DAI1 Pin 9	Not Muxed	DAI1_PIN09
DAI1_PIN10	DAI1 Pin 10	Not Muxed	DAI1_PIN10
DAI1_PIN11	DAI1 Pin 11	Not Muxed	DAI1_PIN11
DAI1_PIN12	DAI1 Pin 12	Not Muxed	DAI1_PIN12
DAI1_PIN13	DAI1 Pin 13	Not Muxed	DAI1_PIN13
DAI1_PIN14	DAI1 Pin 14	Not Muxed	DAI1_PIN14
DAI1_PIN15	DAI1 Pin 15	Not Muxed	DAI1_PIN15
DAI1_PIN16	DAI1 Pin 16	Not Muxed	DAI1_PIN16
DAI1_PIN17	DAI1 Pin 17	Not Muxed	DAI1_PIN17
DAI1_PIN18	DAI1 Pin 18	Not Muxed	DAI1_PIN18
DAI1_PIN19	DAI1 Pin 19	Not Muxed	DAI1_PIN19
DAI1_PIN20	DAI1 Pin 20	Not Muxed	DAI1_PIN20
DMC0_A00	DMC0 Address 0	Not Muxed	DMC0_A00
DMC0_A01	DMC0 Address 1	Not Muxed	DMC0_A01
DMC0_A02	DMC0 Address 2	Not Muxed	DMC0_A02
DMC0_A03	DMC0 Address 3	Not Muxed	DMC0_A03
DMC0_A04	DMC0 Address 4	Not Muxed	DMC0_A04

ADSP-SC596/ADSP-SC598

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
DMC0_A05	DMC0 Address 5	Not Muxed	DMC0_A05
DMC0_A06	DMC0 Address 6	Not Muxed	DMC0_A06
DMC0_A07	DMC0 Address 7	Not Muxed	DMC0_A07
DMC0_A08	DMC0 Address 8	Not Muxed	DMC0_A08
DMC0_A09	DMC0 Address 9	Not Muxed	DMC0_A09
DMC0_A10	DMC0 Address 10	Not Muxed	DMC0_A10
DMC0_A11	DMC0 Address 11	Not Muxed	DMC0_A11
DMC0_A12	DMC0 Address 12	Not Muxed	DMC0_A12
DMC0_A13	DMC0 Address 13	Not Muxed	DMC0_A13
DMC0_A14	DMC0 Address 14	Not Muxed	DMC0_A14
DMC0_A15	DMC0 Address 15	Not Muxed	DMC0_A15
DMC0_BA0	DMC0 Bank Address Input 0	Not Muxed	DMC0_BA0
DMC0_BA1	DMC0 Bank Address Input 1	Not Muxed	DMC0_BA1
DMC0_BA2	DMC0 Bank Address Input 2	Not Muxed	DMC0_BA2
<u>DMC0_CAS</u>	DMC0 Column Address Strobe	Not Muxed	<u>DMC0_CAS</u>
DMC0_CK	DMC0 Clock	Not Muxed	DMC0_CK
<u>DMC0_CK</u>	DMC0 Clock (Complement)	Not Muxed	<u>DMC0_CK</u>
DMC0_CKE	DMC0 Clock Enable	Not Muxed	DMC0_CKE
<u>DMC0_CS0</u>	DMC0 Chip Select 0	Not Muxed	<u>DMC0_CS0</u>
DMC0_DQ00	DMC0 Data 0	Not Muxed	DMC0_DQ00
DMC0_DQ01	DMC0 Data 1	Not Muxed	DMC0_DQ01
DMC0_DQ02	DMC0 Data 2	Not Muxed	DMC0_DQ02
DMC0_DQ03	DMC0 Data 3	Not Muxed	DMC0_DQ03
DMC0_DQ04	DMC0 Data 4	Not Muxed	DMC0_DQ04
DMC0_DQ05	DMC0 Data 5	Not Muxed	DMC0_DQ05
DMC0_DQ06	DMC0 Data 6	Not Muxed	DMC0_DQ06
DMC0_DQ07	DMC0 Data 7	Not Muxed	DMC0_DQ07
DMC0_DQ08	DMC0 Data 8	Not Muxed	DMC0_DQ08
DMC0_DQ09	DMC0 Data 9	Not Muxed	DMC0_DQ09
DMC0_DQ10	DMC0 Data 10	Not Muxed	DMC0_DQ10
DMC0_DQ11	DMC0 Data 11	Not Muxed	DMC0_DQ11
DMC0_DQ12	DMC0 Data 12	Not Muxed	DMC0_DQ12
DMC0_DQ13	DMC0 Data 13	Not Muxed	DMC0_DQ13
DMC0_DQ14	DMC0 Data 14	Not Muxed	DMC0_DQ14
DMC0_DQ15	DMC0 Data 15	Not Muxed	DMC0_DQ15
DMC0_LDM	DMC0 Data Mask for Lower Byte	Not Muxed	DMC0_LDM
DMC0_LDQS	DMC0 Data Strobe for Lower Byte	Not Muxed	DMC0_LDQS
<u>DMC0_LDQS</u>	DMC0 Data Strobe for Lower Byte (Complement)	Not Muxed	<u>DMC0_LDQS</u>
DMC0_ODT	DMC0 On-Die Termination	Not Muxed	DMC0_ODT
<u>DMC0_RAS</u>	DMC0 Row Address Strobe	Not Muxed	<u>DMC0_RAS</u>
<u>DMC0_RESET</u>	DMC0 Reset	Not Muxed	<u>DMC0_RESET</u>
DMC0_RZQ	DMC0 External Calibration Resistor Connection	Not Muxed	DMC0_RZQ
DMC0_UDM	DMC0 Data Mask for Upper Byte	Not Muxed	DMC0_UDM
DMC0_UDQS	DMC0 Data Strobe for Upper Byte	Not Muxed	DMC0_UDQS
<u>DMC0_UDQS</u>	DMC0 Data Strobe for Upper Byte (Complement)	Not Muxed	<u>DMC0_UDQS</u>
DMC0_VREF0	DMC0 Voltage Reference	Not Muxed	DMC0_VREF0
<u>DMC0_W_E</u>	DMC0 Write Enable	Not Muxed	<u>DMC0_W_E</u>
EMSIO_CD	EMSIO Card Detect	B	PB_15

ADSP-SC596/ADSP-SC598

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
EMSIO_CLK	EMSIO Clock	E	PE_09
EMSIO_CMD	EMSIO Command	G	PG_01
EMSIO_D0	EMSIO Data 0	D	PD_15
EMSIO_D1	EMSIO Data 1	E	PE_01
EMSIO_D2	EMSIO Data 2	E	PE_06
EMSIO_D3	EMSIO Data 3	E	PE_08
EMSIO_D4	EMSIO Data 4	G	PG_02
EMSIO_D5	EMSIO Data 5	G	PG_08
EMSIO_D6	EMSIO Data 6	G	PG_09
EMSIO_D7	EMSIO Data 7	G	PG_10
EMSIO_LED_CONTROL	EMSIO LED Control	I	PI_06
EMSIO_RST	EMSIO Reset	C	PC_04
EMSIO_WP	EMSIO Write Protect	C	PC_06
ETH0_COL	EMAC0 MII Collision Detect	D	PD_07
ETH0_CRS	EMAC0 MII Carrier Sense	D	PD_02
ETH0_MDC	EMAC0 Serial Management Clock	H	PH_03
ETH0_MDIO	EMAC0 Serial Management Bidirectional Data	H	PH_04
ETH0_PHY_INT	EMAC0 PHY Interrupt	D	PD_12
ETH0_PTPAUX_MCG_IN0	EMAC0 PTP Auxiliary/Media Clock Generation Trigger Input 0	I	PI_02
ETH0_PTPAUX_MCG_IN1	EMAC0 PTP Auxiliary/Media Clock Generation Trigger Input 1	D	PD_05
ETH0_PTPAUX_MCG_IN2	EMAC0 PTP Auxiliary/Media Clock Generation Trigger Input 2	D	PD_03
ETH0_PTPAUX_MCG_IN3	EMAC0 PTP Auxiliary/Media Clock Generation Trigger Input 3	E	PE_09
ETH0_PTPCLKIN0	EMAC0 PTP Clock Input 0	I	PI_01
ETH0_PTPPPS0	EMAC0 Pulse Per Second Output 0	I	PI_04
ETH0_PTPPPS1	EMAC0 Pulse Per Second Output 1	I	PI_03
ETH0_PTPPPS2	EMAC0 Pulse Per Second Output 2	I	PI_05
ETH0_PTPPPS3	EMAC0 Pulse Per Second Output 3	I	PI_06
ETH0_RXCLK_REFCLK	EMAC0 RXCLK (10/100/1000) or REFCLK (10/100)	H	PH_07
ETH0_RXCTL_CRSRX_DV	EMAC0 RXCTL (RGMII) or CRS_DV (GMII) or RX_DV (MII)	H	PH_08
ETH0_RXD0	EMAC0 Receive Data 0	H	PH_05
ETH0_RXD1	EMAC0 Receive Data 1	H	PH_06
ETH0_RXD2	EMAC0 Receive Data 2	H	PH_11
ETH0_RXD3	EMAC0 Receive Data 3	H	PH_12
ETH0_RXERR	EMAC0 Receive Error	D	PD_06
ETH0_TXCLK	EMAC0 Transmit Clock	H	PH_14
ETH0_TXCTL_TXEN	EMAC0 TXCTL (10/100/1000) or TXEN (10/100)	H	PH_13
ETH0_TXD0	EMAC0 Transmit Data 0	H	PH_09
ETH0_TXD1	EMAC0 Transmit Data 1	H	PH_10
ETH0_TXD2	EMAC0 Transmit Data 2	H	PH_15
ETH0_TXD3	EMAC0 Transmit Data 3	I	PI_00
ETH1_CRS	EMAC1 Carrier Sense	F	PF_03
ETH1_MDC	EMAC1 Serial Management Clock	F	PF_02
ETH1_MDIO	EMAC1 Serial Management Bidirectional Data	F	PF_01
ETH1_REFCLK	EMAC1 Reference Clock	E	PE_11
ETH1_RXD0	EMAC1 Receive Data 0	E	PE_15
ETH1_RXD1	EMAC1 Receive Data 1	F	PF_00
ETH1_TXD0	EMAC1 Transmit Data 0	E	PE_13
ETH1_TXD1	EMAC1 Transmit Data 1	E	PE_14

ADSP-SC596/ADSP-SC598

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
ETH1_TXEN	EMAC1 Transmit Enable	E	PE_12
HADC0_EOC_DOUT	HADC0 End of Conversion	A	PA_11
HADC0_MUX0	HADC0 MUX0	E	PE_02
HADC0_MUX1	HADC0 MUX1	E	PE_04
HADC0_MUX2	HADC0 MUX2	E	PE_03
HADC0_VIN0	HADC0 Analog Input at Channel 0	Not Muxed	HADC0_VIN0
HADC0_VIN1	HADC0 Analog Input at Channel 1	Not Muxed	HADC0_VIN1
HADC0_VIN2	HADC0 Analog Input at Channel 2	Not Muxed	HADC0_VIN2
HADC0_VIN3	HADC0 Analog Input at Channel 3	Not Muxed	HADC0_VIN3
HADC0_VIN4	HADC0 Analog Input at Channel 4	Not Muxed	HADC0_VIN4
HADC0_VIN5	HADC0 Analog Input at Channel 5	Not Muxed	HADC0_VIN5
HADC0_VIN6	HADC0 Analog Input at Channel 6	Not Muxed	HADC0_VIN6
HADC0_VIN7	HADC0 Analog Input at Channel 7	Not Muxed	HADC0_VIN7
HADC0_VREFN	HADC0 Ground Reference for ADC	Not Muxed	HADC0_VREFN
HADC0_VREFP	HADC0 External Reference for ADC	Not Muxed	HADC0_VREFP
JTG_TCK	JTAG Clock	Not Muxed	JTG_TCK
JTG_TDI	JTAG Serial Data In	Not Muxed	JTG_TDI
JTG_TDO	JTAG Serial Data Out	Not Muxed	JTG_TDO
JTG_TMS	JTAG Mode Select	Not Muxed	JTG_TMS
JTG_TRST	JTAG Reset	Not Muxed	JTG_TRST
LP0_ACK	LP0 Acknowledge	B	PB_04
LP0_CLK	LP0 Clock	B	PB_06
LP0_D0	LP0 Data 0	B	PB_07
LP0_D1	LP0 Data 1	B	PB_08
LP0_D2	LP0 Data 2	B	PB_09
LP0_D3	LP0 Data 3	B	PB_10
LP0_D4	LP0 Data 4	B	PB_11
LP0_D5	LP0 Data 5	B	PB_12
LP0_D6	LP0 Data 6	B	PB_13
LP0_D7	LP0 Data 7	B	PB_14
LP1_ACK	LP1 Acknowledge	B	PB_02
LP1_CLK	LP1 Clock	C	PC_07
LP1_D0	LP1 Data 0	B	PB_15
LP1_D1	LP1 Data 1	C	PC_00
LP1_D2	LP1 Data 2	C	PC_01
LP1_D3	LP1 Data 3	C	PC_02
LP1_D4	LP1 Data 4	C	PC_03
LP1_D5	LP1 Data 5	C	PC_04
LP1_D6	LP1 Data 6	C	PC_05
LP1_D7	LP1 Data 7	C	PC_06
MLB0_CLK	MLB0 Single-Ended Clock	B	PB_02
MLB0_CLKN	MLB0 Differential Clock (-)	Not Muxed	MLB0_CLKN
MLB0_CLKOUT	MLB0 Clock Single-Ended Clock Out	F	PF_05
MLB0_CLKP	MLB0 Differential Clock (+)	Not Muxed	MLB0_CLKP
MLB0_DAT	MLB0 Single-Ended Data	B	PB_00
MLB0_DATN	MLB0 Differential Data (-)	Not Muxed	MLB0_DATN
MLB0_DATP	MLB0 Differential Clock (+)	Not Muxed	MLB0_DATP
MLB0_SIG	MLB0 Single-Ended Signal	B	PB_01

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
MLB0_SIGN	MLB0 Differential Signal (-)	Not Muxed	MLB0_SIGN
MLB0_SIGP	MLB0 Differential Signal (+)	Not Muxed	MLB0_SIGP
OSPI0_CLK	OSPI0 Clock	C	PC_08
OSPI0_D2	OSPI0 Data 2	A	PA_02
OSPI0_D3	OSPI0 Data 3	A	PA_03
OSPI0_D4	OSPI0 Data 4	D	PD_00
OSPI0_D5	OSPI0 Data 5	C	PC_15
OSPI0_D6	OSPI0 Data 6	A	PA_08
OSPI0_D7	OSPI0 Data 7	C	PC_13
OSPI0_DQS	OSPI0 Data Strobe	D	PD_04
OSPI0_MISO	OSPI0 Master In, Slave Out	C	PC_12
OSPI0_MOSI	OSPI0 Master Out, Slave In	C	PC_11
OSPI0_SEL1	OSPI0 Slave Select Output 1	A	PA_05
OSPI0_SEL2	OSPI0 Slave Select Output 2	I	PI_05
OSPI0_SEL3	OSPI0 Slave Select Output 3	G	PG_12
OSPI0_SEL4	OSPI0 Slave Select Output 4	G	PG_13
PPI0_CLK	EPPI0 Clock	E	PE_04
PPI0_D00	EPPI0 Data 0	E	PE_05
PPI0_D01	EPPI0 Data 1	E	PE_06
PPI0_D02	EPPI0 Data 2	E	PE_07
PPI0_D03	EPPI0 Data 3	E	PE_08
PPI0_D04	EPPI0 Data 4	E	PE_09
PPI0_D05	EPPI0 Data 5	E	PE_10
PPI0_D06	EPPI0 Data 6	D	PD_01
PPI0_D07	EPPI0 Data 7	D	PD_04
PPI0_D08	EPPI0 Data 8	D	PD_05
PPI0_D09	EPPI0 Data 9	D	PD_10
PPI0_D10	EPPI0 Data 10	D	PD_11
PPI0_D11	EPPI0 Data 11	D	PD_12
PPI0_D12	EPPI0 Data 12	D	PD_13
PPI0_D13	EPPI0 Data 13	D	PD_14
PPI0_D14	EPPI0 Data 14	D	PD_15
PPI0_D15	EPPI0 Data 15	E	PE_00
PPI0_D16	EPPI0 Data 16	C	PC_08
PPI0_D17	EPPI0 Data 17	C	PC_09
PPI0_D18	EPPI0 Data 18	C	PC_10
PPI0_D19	EPPI0 Data 19	C	PC_11
PPI0_D20	EPPI0 Data 20	C	PC_12
PPI0_D21	EPPI0 Data 21	C	PC_13
PPI0_D22	EPPI0 Data 22	C	PC_14
PPI0_D23	EPPI0 Data 23	C	PC_15
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	E	PE_01
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	E	PE_02
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	E	PE_03
SPI0_CLK	SPI0 Clock	A	PA_06
SPI0_MISO	SPI0 Mater In, Slave Out	A	PA_07
SPI0_MOSI	SPI0 Master Out, Slave In	A	PA_08
SPI0_RDY	SPI0 Ready	B	PB_11

ADSP-SC596/ADSP-SC598

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
SPI0_SEL1	SPI0 Slave Select Output 1	A	PA_09
SPI0_SEL2	SPI0 Slave Select Output 2	B	PB_05
SPI0_SEL3	SPI0 Slave Select Output 3	B	PB_14
SPI0_SEL4	SPI0 Slave Select Output 4	B	PB_15
SPI0_SEL5	SPI0 Slave Select Output 5	G	PG_02
SPI0_SEL6	SPI0 Slave Select Output 6	E	PE_15
SPI0_SEL7	SPI0 Slave Select Output 7	F	PF_00
SPI0_SS	SPI0 Slave Select Input	A	PA_09
SPI1_CLK	SPI1 Clock	A	PA_10
SPI1_D2	SPI1 Data 2	A	PA_14
SPI1_D3	SPI1 Data 3	A	PA_15
SPI1_MISO	SPI1 Master In, Slave Out	A	PA_11
SPI1_MOSI	SPI1 Master Out, Slave In	A	PA_12
SPI1_RDY	SPI1 Ready	C	PC_06
SPI1_SEL1	SPI1 Slave Select Output 1	A	PA_13
SPI1_SEL2	SPI1 Slave Select Output 2	B	PB_10
SPI1_SEL3	SPI1 Slave Select Output 3	B	PB_13
SPI1_SEL4	SPI1 Slave Select Output 4	E	PE_02
SPI1_SEL5	SPI1 Slave Select Output 5	B	PB_06
SPI1_SEL6	SPI1 Slave Select Output 6	G	PG_09
SPI1_SEL7	SPI1 Slave Select Output 7	B	PB_08
SPI1_SS	SPI1 Slave Select Input	A	PA_13
SPI2_CLK	SPI2 Clock	A	PA_04
SPI2_D2	SPI2 Data 2	A	PA_02
SPI2_D3	SPI2 Data 3	A	PA_03
SPI2_MISO	SPI2 Master In, Slave Out	A	PA_00
SPI2_MOSI	SPI2 Master Out, Slave In	A	PA_01
SPI2_RDY	SPI2 Ready	B	PB_05
SPI2_SEL1	SPI2 Slave Select Output 1	A	PA_05
SPI2_SEL2	SPI2 Slave Select Output 2	H	PH_02
SPI2_SEL3	SPI2 Slave Select Output 3	B	PB_12
SPI2_SEL4	SPI2 Slave Select Output 4	G	PG_12
SPI2_SEL5	SPI2 Slave Select Output 5	B	PB_07
SPI2_SEL6	SPI2 Slave Select Output 6	G	PG_01
SPI2_SEL7	SPI2 Slave Select Output 7	E	PE_14
SPI2_SS	SPI2 Slave Select Input	A	PA_05
SPI3_CLK	SPI3 Clock	G	PG_05
SPI3_MISO	SPI3 Master In, Slave Out	G	PG_06
SPI3_MOSI	SPI3 Master Out, Slave In	G	PG_07
SPI3_RDY	SPI3 Ready	F	PF_00
SPI3_SEL1	SPI3 Slave Select Output 1	G	PG_08
SPI3_SEL2	SPI3 Slave Select Output 2	F	PF_07
SPI3_SEL3	SPI3 Slave Select Output 3	E	PE_00
SPI3_SEL4	SPI3 Slave Select Output 4	E	PE_01
SPI3_SEL5	SPI3 Slave Select Output 5	G	PG_15
SPI3_SEL6	SPI3 Slave Select Output 6	F	PF_08
SPI3_SEL7	SPI3 Slave Select Output 7	H	PH_00
SPI3_SS	SPI3 Slave Select Input	G	PG_08

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
SYS_BMODE0	Boot Mode Control Pin 0	Not Muxed	SYS_BMODE0
SYS_BMODE1	Boot Mode Control Pin 1	Not Muxed	SYS_BMODE1
SYS_BMODE2	Boot Mode Control Pin 2	Not Muxed	SYS_BMODE2
SYS_CLKIN0	Clock/Crystal Input 0	Not Muxed	SYS_CLKIN0
SYS_CLKIN1	Clock/Crystal Input 1	Not Muxed	SYS_CLKIN1
SYS_CLKOUT	Processor Clock Output	Not Muxed	SYS_CLKOUT
SYS_FAULT	Active-Low Fault Output	Not Muxed	SYS_FAULT
SYS_HWRST	Processor Hardware Reset Control	Not Muxed	SYS_HWRST
SYS_RESOUT	Reset Output	Not Muxed	SYS_RESOUT
SYS_XTAL0	Crystal Output 0	Not Muxed	SYS_XTAL0
SYS_XTAL1	Crystal Output 1	Not Muxed	SYS_XTAL1
TMO_ACI00	TIMER0 Alternate Capture Input 0	D	PD_08
TMO_ACI01	TIMER0 Alternate Capture Input 1	D	PD_04
TMO_ACI02	TIMER0 Alternate Capture Input 2	B	PB_11
TMO_ACI03	TIMER0 Alternate Capture Input 3	B	PB_00
TMO_ACI04	TIMER0 Alternate Capture Input 4	A	PA_11
TMO_ACI10	TIMER0 Alternate Capture Input 10	G	PG_14
TMO_ACI11	TIMER0 Alternate Capture Input 11	G	PG_01
TMO_ACI12	TIMER0 Alternate Capture Input 12	H	PH_00
TMO_ACI13	TIMER0 Alternate Capture Input 13	H	PH_01
TMO_ACLK01	TIMER0 Alternate Clock 1	A	PA_06
TMO_ACLK02	TIMER0 Alternate Clock 2	A	PA_08
TMO_ACLK03	TIMER0 Alternate Clock 3	G	PG_10
TMO_ACLK04	TIMER0 Alternate Clock 4	B	PB_02
TMO_ACLK10	TIMER0 Alternate Clock 10	G	PG_00
TMO_ACLK11	TIMER0 Alternate Clock 11	G	PG_05
TMO_ACLK12	TIMER0 Alternate Clock 12	G	PG_07
TMO_ACLK13	TIMER0 Alternate Clock 13	F	PF_04
TMO_ACLK14	TIMER0 Alternate Clock 14	I	PI_06
TMO_ACLK15	TIMER0 Alternate Clock 15	E	PE_01
TMO_CLK	TIMER0 Clock	F	PF_05
TMO_TMR00	TIMER0 Timer 0	A	PA_10
TMO_TMR01	TIMER0 Timer 1	A	PA_12
TMO_TMR02	TIMER0 Timer 2	E	PE_10
TMO_TMR03	TIMER0 Timer 3	B	PB_03
TMO_TMR04	TIMER0 Timer 4	B	PB_04
TMO_TMR05	TIMER0 Timer 5	B	PB_05
TMO_TMR06	TIMER0 Timer 6	B	PB_08
TMO_TMR07	TIMER0 Timer 7	B	PB_09
TMO_TMR08	TIMER0 Timer 8	C	PC_05
TMO_TMR09	TIMER0 Timer 9	C	PC_07
TMO_TMR10	TIMER0 Timer 10	G	PG_14
TMO_TMR11	TIMER0 Timer 11	G	PG_15
TMO_TMR12	TIMER0 Timer 12	H	PH_00
TMO_TMR13	TIMER0 Timer 13	H	PH_01
TMO_TMR14	TIMER0 Timer 14	H	PH_02
TMO_TMR15	TIMER0 Timer 15	D	PD_15
TRACE0_CLK	TRACE0 Trace Clock	B	PB_06

ADSP-SC596/ADSP-SC598

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
TRACE0_D00	TRACE0 Trace Data 0	B	PB_07
TRACE0_D01	TRACE0 Trace Data 1	B	PB_08
TRACE0_D02	TRACE0 Trace Data 2	B	PB_09
TRACE0_D03	TRACE0 Trace Data 3	B	PB_10
TRACE0_D04	TRACE0 Trace Data 4	C	PC_00
TRACE0_D05	TRACE0 Trace Data 5	C	PC_01
TRACE0_D06	TRACE0 Trace Data 6	C	PC_02
TRACE0_D07	TRACE0 Trace Data 7	C	PC_03
TRACE0_D08	TRACE0 Trace Data 8	H	PH_03
TRACE0_D09	TRACE0 Trace Data 9	H	PH_04
TRACE0_D10	TRACE0 Trace Data 10	H	PH_05
TRACE0_D11	TRACE0 Trace Data 11	H	PH_06
TRACE0_D12	TRACE0 Trace Data 12	H	PH_07
TRACE0_D13	TRACE0 Trace Data 13	H	PH_08
TRACE0_D14	TRACE0 Trace Data 14	H	PH_09
TRACE0_D15	TRACE0 Trace Data 15	H	PH_10
TWI0_SCL	TWI0 Serial Clock	E	PE_02
TWI0_SDA	TWI0 Serial Data	E	PE_03
TWI1_SCL	TWI1 Serial Clock	B	PB_00
TWI1_SDA	TWI1 Serial Data	B	PB_01
TWI2_SCL	TWI2 Serial Clock	E	PE_04
TWI2_SDA	TWI2 Serial Data	E	PE_05
TWI3_SCL	TWI3 Serial Clock	A	PA_02
TWI3_SDA	TWI3 Serial Data	I	PI_02
TWI4_SCL	TWI4 Serial Clock	D	PD_14
TWI4_SDA	TWI4 Serial Data	C	PC_01
TWI5_SCL	TWI5 Serial Clock	C	PC_02
TWI5_SDA	TWI5 Serial Data	E	PE_01
UART0_CTS	UART0 Clear to Send	D	PD_06
UART0_RTS	UART0 Request to Send	D	PD_07
UART0_RX	UART0 Receive	A	PA_07
UART0_TX	UART0 Transmit	D	PD_09
UART1_CTS	UART1 Clear to Send	D	PD_03
UART1_RTS	UART1 Request to Send	B	PB_00
UART1_RX	UART1 Receive	D	PD_04
UART1_TX	UART1 Transmit	D	PD_05
UART2_CTS	UART2 Clear to Send	B	PB_14
UART2_RTS	UART2 Request to Send	D	PD_12
UART2_RX	UART2 Receive	D	PD_10
UART2_TX	UART2 Transmit	D	PD_11
UART3_CTS	UART3 Clear to Send	G	PG_10
UART3_RTS	UART3 Request to Send	G	PG_09
UART3_RX	UART3 Receive	G	PG_04
UART3_TX	UART3 Transmit	G	PG_03
USBC0_CLK	USBC0 Clock Signal	F	PF_14
USBC0_DATA0	USBC0 Data 0	F	PF_13
USBC0_DATA1	USBC0 Data 1	F	PF_12
USBC0_DATA2	USBC0 Data 2	F	PF_11

ADSP-SC596/ADSP-SC598

Table 10. ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
USBC0_DATA3	USBC0 Data 3	F	PF_10
USBC0_DATA4	USBC0 Data 4	F	PF_07
USBC0_DATA5	USBC0 Data 5	F	PF_06
USBC0_DATA6	USBC0 Data 6	F	PF_05
USBC0_DATA7	USBC0 Data 7	F	PF_04
USBC0_DIR	USBC0 Data Direction Control	F	PF_09
USBC0_NXT	USBC0 Next Data Control	F	PF_08
USBC0_STOP	USBC0 Stop Output Control	F	PF_03

ADSP-SC596/ADSP-SC598

GPIO MULTIPLEXING FOR 400-BALL BGA_ED PACKAGE

Table 11 through Table 19 identify the pin functions that are multiplexed on the GPIO pins of the 400-ball BGA_ED package.

Table 11. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port A

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PA_00	SPI2_MISO	OSPI0_MISO ¹			
PA_01	SPI2_MOSI	OSPI0_MOSI ¹			
PA_02	SPI2_D2	OSPI0_D2 ¹	TWI3_SCL ¹		TM0_ACLK03
PA_03	SPI2_D3	OSPI0_D3 ¹	TWI3_SDA ¹		
PA_04	SPI2_CLK	OSPI0_CLK ¹			
PA_05	SPI2_SEL1	OSPI0_SEL1 ²			SPI2_SS
PA_06	SPI0_CLK	UART0_TX ¹	OSPI0_D4 ¹		TM0_ACLK01
PA_07	SPI0_MISO	UART0_RX ¹	OSPI0_D5 ¹		TM0_ACIO0
PA_08	SPI0_MOSI	UART0 RTS ¹	OSPI0_D6 ¹		TM0_ACLK02
PA_09	SPI0_SEL1	UART0_CTS ¹	OSPI0_D7 ¹		SPI0_SS
PA_10	TWI0_SCL ¹	SPI1_CLK	TM0_TMR00		
PA_11	TWI0_SDA ¹	SPI1_MISO	HADC0_EOC_DOUT		TM0_ACIO4
PA_12	C1_FLG00	SPI1_MOSI	TM0_TMR01		
PA_13	C1_FLG01	SPI1_SEL1	TM0_TMR02		SPI1_SS
PA_14	TWI2_SCL ¹	SPI1_D2	UART1_RX ¹		TM0_ACIO1
PA_15	TWI2_SDA ¹	SPI1_D3	UART1_TX ¹		

¹To ensure proper timing, for peripherals whose signals are available at multiple places in the pin mux, care must be taken to select all needed signals of the peripheral so that their associated pins are as close as possible to each other.

²These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

Table 12. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port B

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PB_00	MLB0_DAT	TWI1_SCL ¹	UART1_RTS ¹		TM0_ACIO3
PB_01	MLB0_SIG	TWI1_SDA ¹	UART1_CTS ¹		TM0_CLK
PB_02	MLB0_CLK	C1_FLG03	LP1_ACK		TM0_ACLK04
PB_03	TM0_TMR03	C1_FLG02	SPI2_SEL2 ²		CNT0_UD
PB_04	TM0_TMR04	SPI1_RDY ²	LP0_ACK		CNT0_ZM
PB_05	TM0_TMR05	SPI2_RDY ²	SPI0_SEL2		CNT0_DG
PB_06	LP0_CLK	SPI1_SEL5		TRACE0_CLK	
PB_07	LP0_D0	SPI2_SEL5		TRACE0_D00	
PB_08	LP0_D1	SPI1_SEL7 ²	TM0_TMR06	TRACE0_D01	
PB_09	LP0_D2	SPI2_SEL7 ²	TM0_TMR07	TRACE0_D02	
PB_10	LP0_D3	SPI1_SEL2		TRACE0_D03	
PB_11	LP0_D4	SPI0_RDY ²		UART2_RX ¹	
PB_12	LP0_D5	SPI2_SEL3 ²		UART2_TX ¹	
PB_13	LP0_D6	SPI1_SEL3	OSPI0_DQS ¹	UART2_RTS ¹	
PB_14	LP0_D7	SPI0_SEL3		UART2_CTS ¹	
PB_15	LP1_D0	SPI0_SEL4	EMSI0_CD		

¹To ensure proper timing, for peripherals whose signals are available at multiple places in the pin mux, care must be taken to select all needed signals of the peripheral so that their associated pins are as close as possible to each other.

²These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

Table 13. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port C

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PC_00	LP1_D1	TWI4_SCL ¹	TRACE0_D04	SPI1_SEL4	
PC_01	LP1_D2	TWI4_SDA ¹	TRACE0_D05	SPI2_SEL4 ²	
PC_02	LP1_D3	TWI5_SCL ¹	TRACE0_D06	SPI1_SEL6 ²	
PC_03	LP1_D4	TWI5_SDA ¹	TRACE0_D07	SPI2_SEL6 ²	
PC_04	LP1_D5	OSPI0_SEL2 ²	EMSIO_RST		
PC_05	LP1_D6	OSPI0_SEL3 ²	TM0_TMR08		
PC_06	LP1_D7	SPI1_RDY	EMSIO_WP		
PC_07	LP1_CLK		TM0_TMR09	SYS_FAULT	
PC_08	OSPI0_CLK ¹			PPIO_D16	
PC_09	OSPI0_D3 ¹			PPIO_D17	
PC_10	OSPI0_D2 ¹			PPIO_D18	
PC_11	OSPI0_MOSI ¹			PPIO_D19	
PC_12	OSPI0_MISO ¹			PPIO_D20	
PC_13	OSPI0_D7 ¹			PPIO_D21	
PC_14	OSPI0_D6 ¹			PPIO_D22	
PC_15	OSPI0_D5 ¹			PPIO_D23	

¹To ensure proper timing, for peripherals whose signals are available at multiple places in the pin mux, care must be taken to select all needed signals of the peripheral so that their associated pins are as close as possible to each other

²These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

Table 14. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port D

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PD_00	OSPI0_D4 ¹				
PD_01	OSPI0_SEL1 ²				
PD_02	UART1_RTS ¹	C2_FLG10	ETH0_CRS	PPIO_D06	
PD_03	UART1_CTS ¹	C1_FLG11			
PD_04	UART1_RX ¹			LP0_ACK	ETH0_PTPAUX_MCG_IN2
PD_05	UART1_TX ¹			PPIO_D07	TM0_ACI01
PD_06	UART0_CTS ¹	ETH0_RXERR		PPIO_D08	ETH0_PTPAUX_MCG_IN1
PD_07	UART0_RTS ¹	ETH0_COL			
PD_08	UART0_RX ¹				TM0_ACI00
PD_09	UART0_TX ¹				TM0_ACI02
PD_10		UART2_RX ¹		PPIO_D09	
PD_11		UART2_TX ¹		PPIO_D10	
PD_12	TM0_TMR06	UART2_RTS ¹	ETH0_PHY_INT	PPIO_D11	
PD_13	TM0_TMR07	UART2_CTS ¹		PPIO_D12	
PD_14	TWI4_SCL ¹	LP1_ACK	C2_FLG09	PPIO_D13	
PD_15	TWI4_SDA ¹	EMSIO_D0	TM0_TMR15	PPIO_D14	

¹To ensure proper timing, for peripherals whose signals are available at multiple places in the pin mux, care must be taken to select all needed signals of the peripheral so that their associated pins are as close as possible to each other

²These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

ADSP-SC596/ADSP-SC598

Table 15. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port E

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PE_00	TWI5_SCL ¹		SPI3_SEL3	PPI0_D15	
PE_01	TWI5_SDA ¹	EMSI0_D1	<u>SPI3_SEL4</u>	PPI0_FS1	TM0_ACLK15
PE_02	TWI0_SCL ¹	<u>SPI1_SEL4</u>	HADC0_MUX0	PPI0_FS2	
PE_03	TWI0_SDA ¹	<u>SPI2_SEL3</u> ²	HADC0_MUX2	PPI0_FS3	TM0_ACLK04
PE_04	TWI2_SCL ¹		HADC0_MUX1	PPI0_CLK	
PE_05	TWI2_SDA ¹			PPI0_D00	
PE_06	TM0_TMR08	C1_FLG02	EMSI0_D2	PPI0_D01	
PE_07	TM0_TMR09	C1_FLG03	SPI1_RDY ²	PPI0_D02	
PE_08	TM0_TMR00	EMSI0_D3		PPI0_D03	
PE_09	TM0_TMR01	EMSI0_CLK		PPI0_D04	
PE_10	TM0_TMR02	<u>SPI0_SEL4</u>		PPI0_D05	
PE_11	ETH1_REFCLK		C2_FLG07		
PE_12	ETH1_TXEN		C1_FLG08		
PE_13	ETH1_TXD0		C2_FLG13		
PE_14	ETH1_TXD1		<u>SPI2_SEL7</u> ²		
PE_15	ETH1_RXD0		<u>SPI0_SEL6</u>		

¹To ensure proper timing, for peripherals whose signals are available at multiple places in the pin mux, care must be taken to select all needed signals of the peripheral so that their associated pins are as close as possible to each other.

²These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

Table 16. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port F

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PF_00	ETH1_RXD1		SPI0_SEL7		
PF_01	ETH1_MDIO		C1_FLG07		
PF_02	ETH1_MDC		C1_FLG06		
PF_03	ETH1_CRS	C1_FLG10	USBC0_STOP		
PF_04			USBC0_DATA7		
PF_05	MLB0_CLKOUT		USBC0_DATA6		
PF_06	C2_FLG02	<u>SPI1_SEL7</u> ¹	USBC0_DATA5		TM0_ACLK13
PF_07	C2_FLG03	<u>SPI3_SEL2</u>	USBC0_DATA4		TM0_CLK
PF_08	SPI3_SEL6	C2_FLG08	USBC0_NXT	TM0_TMR11	
PF_09		C1_FLG09	USBC0_DIR		
PF_10		C2_FLG04	USBC0_DATA3		
PF_11		C2_FLG05	USBC0_DATA2		
PF_12		C1_FLG13	USBC0_DATA1		
PF_13		C1_FLG12	USBC0_DATA0		
PF_14		C2_FLG12	USBC0_CLK		
PF_15	CANFD0_RX				TM0_ACIO4

¹These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

Table 17. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port G

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PG_00	CANFD0_TX				TM0_ACLK10
PG_01	CANFD1_RX	<u>SPI2_SEL6</u> ¹	EMSI0_CMD		TM0_ACI11
PG_02	CANFD1_TX	<u>SPI0_SEL5</u>	EMSI0_D4		
PG_03	<u>UART3_TX</u>				
PG_04	<u>UART3_RX</u>				TM0_ACI03
PG_05	SPI3_CLK				TM0_ACLK11
PG_06	SPI3_MISO				
PG_07	SPI3_MOSI				
PG_08	<u>SPI3_SEL1</u>	<u>EMSI0_D5</u>			TM0_ACLK12
PG_09	<u>UART3 RTS</u>	<u>SPI1_SEL6</u> ¹	C1_FLG14	<u>EMSI0_D6</u>	<u>SPI3_SS</u>
PG_10	<u>UART3_CTS</u>	<u>EMSI0_D7</u>	C2_FLG14		TM0_ACLK01
PG_11			C2_FLG15		TM0_ACLK03
PG_12	TM0_TMR03	<u>SPI2_SEL4</u> ¹	C2_FLG11	<u>OSPI0_SEL3</u> ¹	
PG_13	C1_FLG00		C2_FLG06	<u>OSPI0_SEL4</u> ¹	
PG_14	TM0_TMR10	<u>SPI0_SEL2</u>			
PG_15	TM0_TMR11	<u>SPI2_RDY</u> ¹	<u>SPI3_SEL5</u>		TM0_ACI10

¹These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

Table 18. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port H

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PH_00	TM0_TMR12		<u>SPI3_SEL7</u>		TM0_ACI12
PH_01	TM0_TMR13	<u>SPI0_RDY</u> ¹			TM0_ACI13
PH_02	C1_FLG01	<u>SPI2_SEL2</u> ¹	TM0_TMR14		
PH_03	ETH0_MDC	TRACE0_D08			
PH_04	ETH0_MDIO	TRACE0_D09			
PH_05	ETH0_RXD0	TRACE0_D10			
PH_06	ETH0_RXD1	TRACE0_D11			
PH_07	ETH0_RXCLK_REFCLK	TRACE0_D12			
PH_08	ETH0_RXCTL_RXDV	TRACE0_D13			
PH_09	ETH0_TXD0	TRACE0_D14			
PH_10	ETH0_TXD1	TRACE0_D15			
PH_11	ETH0_RXD2				
PH_12	ETH0_RXD3				
PH_13	ETH0_TXCTL_TXEN				
PH_14	ETH0_TXCLK				
PH_15	ETH0_TXD2				

¹These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

ADSP-SC596/ADSP-SC598

Table 19. ADSP-SC596/ADSP-SC598 Signal Multiplexing for Port I

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PI_00	ETH0_TXD3				
PI_01	C2_FLG00	ETH0_PTPCLKIN0	TWI3_SCL ¹		
PI_02	C2_FLG01	ETH0_PTPAUX_MCG_IN0	TWI3_SDA ¹		
PI_03	TWI1_SCL ¹	C1_FLG04	ETH0_PTPPPS1		
PI_04	TWI1_SDA ¹	C1_FLG05	ETH0_PTPPPS0		
PI_05	ETH0_PTPPPS2	OSPI0_SEL2 ²	C1_FLG15		TM0_ACLK02
PI_06	ETH0_PTPPPS3	EMS10_LED_CONTROL			TM0_ACLK14

¹To ensure proper timing, for peripherals whose signals are available at multiple places in the pin mux, care must be taken to select all needed signals of the peripheral so that their associated pins are as close as possible to each other

²These peripheral signals are available at multiple places in the pin mux. These signals can be selected from either of the two locations in pin mux, regardless of proximity to other associated signals of the same peripheral.

Table 20 shows the internal timer signal routing for the BGA_ED package.

Table 20. ADSP-SC596/ADSP-SC598 Internal Timer Signal Routing

Timer Input Signal	Internal Source
TM0_ACLK0	SYS_CLKIN0
TM0_AC15	DAI0_PB04
TM0_ACLK5	DAI0_PB03
TM0_AC16	DAI1_PB04
TM0_ACLK6	DAI1_PB03
TM0_AC17	CNT0_TO
TM0_ACLK7	SYS_CLKIN1
TM0_AC18	DAI0_PB06
TM0_ACLK8	DAI0_PB05
TM0_AC19	DAI1_PB06
TM0_ACLK9	DAI1_PB05
TM0_AC14	DAI0 Group C
TM0_AC15	DAI1 Group C

ADSP-SC596/ADSP-SC598 DESIGNER QUICK REFERENCE

Table 21 provides a quick reference summary of pin related information for circuit board design. The columns in this table provide the following information:

- The signal name column includes the signal name for every pin and the GPIO multiplexed pin function, where applicable.
- The type column identifies the I/O type or supply type of the pin. The abbreviations used in this column are analog (a), supply (s), ground (g) and Input, Output, and InOut.
- The driver type column identifies the driver type used by the corresponding pin. The driver types are defined in the [Output Drive Currents](#) section of this data sheet.
- The internal termination column specifies the termination present after the processor is powered up (both during reset and after reset).

- The reset termination column specifies the termination present when the processor is in the reset state.
- The reset drive column specifies the active drive on the signal when the processor is in the reset state.
- The power domain column specifies the power supply domain in which the signal resides.
- The description and notes column identifies any special requirements or characteristics for a signal. These recommendations apply whether or not the hardware block associated with the signal is featured on the product. If no special requirements are listed, the signal can be left unconnected if it is not used. For multiplexed GPIO pins, this column identifies the functions available on the pin.

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
DAI0_PIN01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 1 Notes: See note ²
DAI0_PIN02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 2 Notes: See note ²
DAI0_PIN03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 3 Notes: See note ²
DAI0_PIN04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 4 Notes: See note ²
DAI0_PIN05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 5 Notes: See note ²
DAI0_PIN06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 6 Notes: See note ²
DAI0_PIN07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 7 Notes: See note ²
DAI0_PIN08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 8 Notes: See note ²
DAI0_PIN09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 9 Notes: See note ²
DAI0_PIN10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 10 Notes: See note ²
DAI0_PIN11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 11 Notes: See note ²
DAI0_PIN12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 12 Notes: See note ²
DAI0_PIN13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 13 Notes: See note ²
DAI0_PIN14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 14 Notes: See note ²
DAI0_PIN15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 15 Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
DAI0_PIN16	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 16 Notes: See note ²
DAI0_PIN17	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 17 Notes: See note ²
DAI0_PIN18	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 18 Notes: See note ²
DAI0_PIN19	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 19 Notes: See note ²
DAI0_PIN20	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI0 Pin 20 Notes: See note ²
DAI1_PIN01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 1 Notes: See note ²
DAI1_PIN02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 2 Notes: See note ²
DAI1_PIN03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 3 Notes: See note ²
DAI1_PIN04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 4 Notes: See note ²
DAI1_PIN05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 5 Notes: See note ²
DAI1_PIN06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 6 Notes: See note ²
DAI1_PIN07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 7 Notes: See note ²
DAI1_PIN08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 8 Notes: See note ²
DAI1_PIN09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 9 Notes: See note ²
DAI1_PIN10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 10 Notes: See note ²
DAI1_PIN11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 11 Notes: See note ²
DAI1_PIN12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 12 Notes: See note ²
DAI1_PIN13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 13 Notes: See note ²
DAI1_PIN14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 14 Notes: See note ²
DAI1_PIN15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 15 Notes: See note ²
DAI1_PIN16	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 16 Notes: See note ²
DAI1_PIN17	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 17 Notes: See note ²
DAI1_PIN18	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 18 Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
DAI1_PIN19	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 19 Notes: See note ²
DAI1_PIN20	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: DAI1 Pin 20 Notes: See note ²
DMC0_A00	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 0 Notes: No notes
DMC0_A01	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 1 Notes: No notes
DMC0_A02	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 2 Notes: No notes
DMC0_A03	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 3 Notes: No notes
DMC0_A04	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 4 Notes: No notes
DMC0_A05	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 5 Notes: No notes
DMC0_A06	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 6 Notes: No notes
DMC0_A07	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 7 Notes: No notes
DMC0_A08	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 8 Notes: No notes
DMC0_A09	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 9 Notes: No notes
DMC0_A10	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 10 Notes: No notes
DMC0_A11	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 11 Notes: No notes
DMC0_A12	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 12 Notes: No notes
DMC0_A13	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 13 Notes: No notes
DMC0_A14	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 14 Notes: No notes
DMC0_A15	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Address 15 Notes: No notes
DMC0_BA0	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Bank Address Input 0 Notes: No notes
DMC0_BA1	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Bank Address Input 1 Notes: No notes
DMC0_BA2	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Bank Address Input 2 Notes: No notes
DMC0_CAS	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Column Address Strobe Notes: No notes
DMC0_CK	Output	C	None	None	L	VDD_DMC	Desc: DMC0 Clock Notes: No notes

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
DMC0_CKE	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Clock Enable Notes: No notes
DMC0_CK	Output	C	None	None	H	VDD_DMC	Desc: DMC0 Clock (complement) Notes: No notes
DMC0_CS0	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Chip Select 0 Notes: No notes
DMC0_DQ00	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 0 Notes: No notes
DMC0_DQ01	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 1 Notes: No notes
DMC0_DQ02	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 2 Notes: No notes
DMC0_DQ03	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 3 Notes: No notes
DMC0_DQ04	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 4 Notes: No notes
DMC0_DQ05	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 5 Notes: No notes
DMC0_DQ06	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 6 Notes: No notes
DMC0_DQ07	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 7 Notes: No notes
DMC0_DQ08	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 8 Notes: No notes
DMC0_DQ09	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 9 Notes: No notes
DMC0_DQ10	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 10 Notes: No notes
DMC0_DQ11	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 11 Notes: No notes
DMC0_DQ12	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 12 Notes: No notes
DMC0_DQ13	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 13 Notes: No notes
DMC0_DQ14	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 14 Notes: No notes

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
DMC0_DQ15	InOut	B	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data 15 Notes: No notes
DMC0_LDM	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Data Mask for Lower Byte Notes: No notes
DMC0_LDQS	InOut	C	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte Notes: No notes
<u>DMC0_LDQS</u>	InOut	C	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte (complement) Notes: No notes
DMC0_ODT	Output	B	None	None	L	VDD_DMC	Desc: DMC0 On-Die Termination Notes: No notes
<u>DMC0_RAS</u>	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Row Address Strobe Notes: No notes
<u>DMC0_RESET</u>	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Reset Notes: No notes
DMC0_RZQ	a	B	None	None	None	VDD_DMC	Desc: DMC0 External Calibration Resistor Connection Notes: 34 Ω external pull-down must be added
DMC0_UDM	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Data Mask for Upper Byte Notes: No notes
DMC0_UDQS	InOut	C	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data Strobe for Upper Byte Notes: No notes
<u>DMC0_UDQS</u>	InOut	C	Internal logic ensures that input signal does not float	None	None	VDD_DMC	Desc: DMC0 Data Strobe for Upper Byte (complement) Notes: No notes
DMC0_VREF0	a		None	None	None	VDD_DMC	Desc: DMC0 Voltage Reference Notes: No notes
DMC0_VREF1	a		None	None	None	VDD_DMC	Desc: DMC0 Voltage Reference Notes: No notes
<u>DMC0_WE</u>	Output	B	None	None	L	VDD_DMC	Desc: DMC0 Write Enable Notes: No notes
GND	g		None	None	None		Desc: Ground Notes: No notes
HADC0_VIN0	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 0 Notes: Connect to GND if not used
HADC0_VIN1	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 1 Notes: Connect to GND if not used
HADC0_VIN2	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 2 Notes: Connect to GND if not used
HADC0_VIN3	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 3 Notes: Connect to GND if not used
HADC0_VIN4	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 4 Notes: Connect to GND if not used
HADC0_VIN5	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 5 Notes: Connect to GND if not used

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
HADC0_VIN6	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 6 Notes: Connect to GND if not used
HADC0_VIN7	a	NA	None	None	None	VDD_ANA	Desc: HADC0 Analog Input 7 Notes: Connect to GND if not used
HADC0_VREFN	s	NA	None	None	None	VDD_ANA	Desc: HADC0 Ground Reference for ADC Notes: Connect to GND if HADC and TMU are not used
HADC0_VREFP	s	NA	None	None	None	VDD_ANA	Desc: HADC0 External Reference for ADC Notes: Connect to VDD_REF if HADC and TMU are not used
JTG_TCK	Input		Pull-up	Pull-up	None	VDD_EXT	Desc: JTAG Clock Notes: No notes
JTG_TDI	Input		Pull-up	Pull-up	None	VDD_EXT	Desc: JTAG Serial Data In Notes: No notes
JTG_TDO	Output	A	None	High-Z when <u>JTG_TRST</u> is low, not affected by <u>SYS_HWRST</u>	None	VDD_EXT	Desc: JTAG Serial Data Out Notes: No notes
JTG_TMS	InOut	A	Pull-up	Pull-up	None	VDD_EXT	Desc: JTAG Mode Select Notes: No notes
<u>JTG_TRST</u>	Input		Pull-down	Pull-down	None	VDD_EXT	Desc: JTAG Reset Notes: No notes
MLB0_CLKN	Input	N/A	Internal logic ensures that input signal does not float	None	None	VDD_REF	Desc: MLB0 Differential Clock (-) Notes: No notes
MLB0_CLKP	Input	N/A	Internal logic ensures that input signal does not float	None	None	VDD_REF	Desc: MLB0 Differential Clock (+) Notes: No notes
MLB0_DATN	InOut	I	Internal logic ensures that input signal does not float	None	None	VDD_REF	Desc: MLB0 Differential Data (-) Notes: No notes
MLB0_DATP	InOut	I	Internal logic ensures that input signal does not float	None	None	VDD_REF	Desc: MLB0 Differential Data (+) Notes: No notes
MLB0_SIGN	InOut	I	Internal logic ensures that input signal does not float	None	None	VDD_REF	Desc: MLB0 Differential Signal (-) Notes: No notes
MLB0_SIGP	InOut	I	Internal logic ensures that input signal does not float	None	None	VDD_REF	Desc: MLB0 Differential Signal (+) Notes: No notes
PA_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 0 OSPI0 MISO SPI2 MISO Notes: See note ²
PA_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position1 OSPI0 MOSI SPI2 MOSI Notes: See note ²
PA_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 2 OSPI0 D2 SPI2 D2 TWI3 Clock TIMER0 Timer Alternate Clock 3 Notes: See note ²

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PA_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 3 OSPI0 D3 SPI2 D3 TWI3 Data Notes: See note ²
PA_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 4 OSPI0 Clock SPI2 Clock Notes: See note ²
PA_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 5 OSPI0 Slave Select Output 1 SPI2 Slave Select Output 1 SPI2 Slave Select Notes: See note ²
PA_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 6 OSPI0 D4 SPI0 Clock UART0 TX TIMER0 Timer Alternate Clock 1 Notes: See note ²
PA_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 7 OSPI0 D5 SPI0 MISO UART0 RX TIMER0 Timer Alternate Input 0 Notes: See note ²
PA_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 8 OSPI0 D6 SPI0 MOSI UART0 RTS TIMER0 Timer Alternate Clock 2 Notes: See note ²
PA_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 9 OSPI0 D7 SPI0 Slave Select Output 1 UART0 CTS SPI0 Slave Select Notes: See note ²
PA_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 10 SPI1 Clock TIMER0 Timer 0 TWI0 Clock Notes: See note ²
PA_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 11 HADC0 End of Conversion SPI1 MISO TWI0 Data TIMER0 Timer Alternate Input 4 Notes: See note ²
PA_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 12 SPI1 MOSI SHARC1 Core Flag 0 TIMER0 Timer 1 Notes: See note ²
PA_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 13 SPI1 Slave Select Output 1 SHARC1 Core Flag 1 TIMER0 Timer 2 SPI1 Slave Select Notes: See note ²
PA_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 14 SPI1 D2 TWI2 Clock UART1 RX TIMER0 Alternate Clock Input 1 Notes: See note ²
PA_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTA Position 15 SPI1 D3 TWI2 Data UART1 TX Notes: See note ²
PB_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 0 MLB0 Data TWI1 Clock UART1 RTS TIMER0 Alternate Clock Input 3 Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PB_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 1 MLB0 Signal TWI1 Data UART1 CTS TIMER0 Timer Clock Notes: See note ²
PB_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 2 LP1 Acknowledge MLB0 Clock SHARC1 Core Flag 3 TIMER0 Timer Alternate Clock 4 Notes: See note ²
PB_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 3 SPI2 Slave Select Output 2 SHARC1 Core Flag 2 TIMER0 Timer 3 CNT0 Count Up and Direction Notes: See note ²
PB_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 4 LP0 Acknowledge SPI1 Ready TIMER0 Timer 4 CNT0 Zero Marker Notes: See note ²
PB_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 5 SPI0 Slave Select Output 2 SPI2 Ready TIMER0 Timer 5 CNT0 Count Down and Gate Notes: See note ²
PB_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 6 LP0 Clock SPI1 Slave Select Output 5 TRACE0 Trace Clock Notes: See note ²
PB_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 7 LP0 D0 SPI2 Slave Select Output 5 TRACE0 Trace Data 00 Notes: See note ²
PB_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 8 LP0 D1 SPI1 Slave Select Output 7 TIMER0 Timer 6 TRACE0 Trace Data 01 Notes: See note ²
PB_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 9 LP0 D2 SPI2 Slave Select Output 7 TIMER0 Timer 7 TRACE0 Trace Data 02 Notes: See note ²
PB_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 10 LP0 D3 SPI1 Slave Select Output 2 TRACE0 Trace Data 03 Notes: See note ²
PB_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 11 LP0 D4 SPI0 Ready UART2 RX TIMER0 Alternate Clock Input 2 Notes: See note ²
PB_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 12 LP0 D5 SPI2 Slave Select Output 3 UART2 TX Notes: See note ²
PB_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 13 LP0 D6 OSPI0 DQS SPI1 Slave Select Output 3 UART2 RTS Notes: See note ²
PB_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 14 LP0 D7 SPI0 Slave Select Output 3 UART2 CTS Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PB_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTB Position 15 LP1 D0 SPI0 Slave Select Output 4 EMSI0 Card Detect Notes: See note ² . When configured as EMSI0_CD, connect through pull-up to VDD_EXT for SD devices and to GND for eMMC devices.
PC_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 0 LP1 D1 SPI1 Slave Select Output 4 TRACE0 Trace Data 04 TWI4 Clock Notes: See note ²
PC_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 1 LP1 D2 SPI2 Slave Select Output 4 TRACE0 Trace Data 05 TWI4 Data Notes: See note ²
PC_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 2 LP1 D3 SPI1 Slave Select Output 6 TRACE0 Trace Data 06 TWI5 Clock Notes: See note ²
PC_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 3 LP1 D4 SPI2 Slave Select Output 6 TRACE0 Trace Data 07 TWI5 Data Notes: See note ²
PC_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 4 LP1 D5 OSPI0 Slave Select Output 2 EMSI0 Reset Notes: See note ²
PC_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 5 LP1 D6 OSPI0 Slave Select Output 3 TIMER0 Timer 8 Notes: See note ²
PC_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 6 LP1 D7 SPI1 Ready EMSI0 Write Protect Notes: See note ² . When configured as EMSI0_WP, connect to VDD_EXT when an eMMC device is used.
PC_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 7 LP1 Clock System Fault TIMER0 Timer 9 Notes: Defaults to GPIO on HPC package. Defaults to SYS_FAULT on LPC package, so external pull-down required to keep signal in deasserted state.
PC_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 8 EPPI0 D16 OSPI0 Clock Notes: See note ²
PC_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 9 EPPI0 D17 OSPI0 D3 Notes: See note ²
PC_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 10 EPPI0 D18 OSPI0 D2 Notes: See note ²
PC_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 11 EPPI0 D19 OSPI0 MOSI Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PC_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 12 EPPI0 D20 OSPI0 MISO Notes: See note ²
PC_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 13 EPPI0 D21 OSPI0 D7 Notes: See note ²
PC_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 14 EPPI0 D22 OSPI0 D6 Notes: See note ²
PC_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTC Position 15 EPPI0 D23 OSPI0 D5 Notes: See note ²
PD_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 0 OSPI0 D4 Notes: See note ²
PD_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 1 EPPI0 D06 OSPI0 Slave Select Output 1 Notes: See note ²
PD_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 2 EMAC0 Carrier Sense SHARC2 Core Flag 10 UART1 RTS Notes: See note ²
PD_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 3 LP0 Acknowledgment SHARC1 Core Flag 11 UART1 CTS EMAC0 PTP Aux or MCG Input 2 Notes: See note ²
PD_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 4 EPPI0 D07 OSPI0 DQS UART1 RX TIMER0 Alternate Clock Input 1 Notes: See note ²
PD_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 5 EPPI0 D08 UART1 TX EMAC0 PTP Aux or MCG Input 1 Notes: See note ²
PD_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 6 EMAC0 Receive Error UART0 CTS Notes: See note ²
PD_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 7 EMAC0 Collision Detect UART0 RTS Notes: See note ²
PD_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 8 UART0 RX TIMER0 Alternate Clock Input 0 Notes: See note ²
PD_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 9 UART0 TX Notes: See note ²
PD_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 10 EPPI0 D09 UART2 RX TIMER0 Alternate Clock Input 2 Notes: See note ²
PD_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 11 EPPI0 D10 UART2 TX Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PD_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 12 EPPI0 D11 TIMER0 Timer 6 UART2 RTS Notes: See note ²
PD_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 13 EPPI0 D12 TIMER0 Timer 7 UART2 CTS Notes: See note ²
PD_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 14 EPPI0 D13 LP1 Acknowledgment SHARC2 Core Flag 9 TWI4 Clock Notes: See note ²
PD_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTD Position 15 EPPI0 D14 TIMER0 Timer 15 TWI4 Data EMSI0 D0 Notes: See note ²
PE_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 0 EPPI0 D15 SPI3 Slave Select Output 3 TWI5 Clock Notes: See note ²
PE_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 1 EPPI0 Frame Sync 1 SPI3 Slave Select Output 4 TWI5 Data EMSI0 D1 TIMER0 Timer Alternate Clock 15 Notes: See note ²
PE_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 2 EPPI0 Frame Sync 2 HADC0 MUX0 SPI1 Slave Select Output 4 TWI0 Clock Notes: See note ²
PE_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 3 EPPI0 Frame Sync 3 HADC0 MUX2 SPI2 Slave Select Output 3 TWI0 Data TIMER0 Timer Alternate Clock 4 Notes: See note ²
PE_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 4 EPPI0 Clock HADC0 MUX1 TWI2 Clock Notes: See note ²
PE_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 5 EPPI0 D00 TWI2 Data Notes: See note ²
PE_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 6 EPPI0 D01 SHARC1 Core Flag 2 EMSI0 D2 TIMER0 Timer 8 Notes: See note ²
PE_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 7 EPPI0 D02 SPI1 Ready SHARC1 Core Flag 3 TIMER0 Timer 9 Notes: See note ²
PE_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 8 EPPI0 D03 TIMER0 Timer 0 EMSI0 D3 Notes: See note ²
PE_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 9 EPPI0 D04 TIMER0 Timer 1 EMSI0 Clock EMAC0 PTP Aux or MCG Input 3 Notes: See note ²
PE_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 10 EPPI0 D05 SPI0 Slave Select Output 4 TIMER0 Timer 2 Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PE_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 11 EMAC1 Reference Clock SHARC2 Core Flag 7 Notes: See note ²
PE_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 12 EMAC1 Transmit Enable SHARC1 Core Flag 8 Notes: See note ²
PE_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 13 EMAC1 Transmit Data D0 SHARC2 Core Flag 13 Notes: See note ²
PE_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 14 EMAC1 Transmit Data D1 SPI2 Slave Select Output 7 Notes: See note ²
PE_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTE Position 15 EMAC1 Receive Data D0 SPI0 Slave Select Output 6 Notes: See note ²
PF_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 0 EMAC1 Receive Data D1 SPI0 Slave Select Output 7 SPI3 Ready Notes: See note ²
PF_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 1 EMAC1 Serial Management Bidirectional Data SHARC1 Core Flag 7 Notes: See note ²
PF_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 2 EMAC1 Serial Management Clock SHARC1 Core Flag 6 Notes: See note ²
PF_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 3 EMAC1 Carrier Sense SHARC1 Core Flag 10 USBC0 USBC Stop Output Control Notes: See note ²
PF_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 4 USBC0 USBC Data 7 TIMER0 Timer Alternate Clock 13 Notes: See note ²
PF_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 5 MLB0 Clock Output USBC0 USBC Data 6 TIMER0 Timer Clock Notes: See note ²
PF_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 6 SPI1 Slave Select Output 7 SHARC2 Core Flag 2 USBC0 USBC Data 5 Notes: See note ²
PF_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 7 SPI3 Slave Select Output 2 SHARC2 Core Flag 3 USBC0 USBC Data 4 Notes: See note ²
PF_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 8 SPI3 Slave Select Output 6 SHARC2 Core Flag 8 TIMER0 Timer 11 USBC0 USBC Next Data Control Notes: See note ²
PF_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 9 SHARC1 Core Flag 9 USBC0 USBC Data Direction Control Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PF_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 10 SHARC2 Core Flag 4 USBC0 USBC Data 3 Notes: See note
PF_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 11 SHARC2 Core Flag 5 USBC0 USBC Data 2 Notes: See note ²
PF_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 12 SHARC1 Core Flag 13 USBC0 USBC Data 1 Notes: See note ²
PF_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 13 SHARC1 Core Flag 12 USBC0 USBC Data 0 Notes: See note ²
PF_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 14 SHARC2 Core Flag 12 USBC0 USBC Clock Signal Notes: See note ²
PF_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTF Position 15 CANFD0 Receive TIMER0 Alternate Clock Input 4 Notes: See note ²
PG_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 0 CANFD0 Transmit TIMER0 Alternate Clock 10 Notes: See note ²
PG_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 1 CANFD1 Receive SPI2 Slave Select Output 6 EMSI0 Command TIMER0 Alternate Clock Input 11 Notes: See note ²
PG_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 2 CANFD1 Transmit SPI0 Slave Select Output 5 EMSI0 D4 Notes: See note ²
PG_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 3 UART3 TX Notes: See note ²
PG_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 4 UART3 RX TIMER0 Alternate Clock Input 3 Notes: See note ²
PG_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 5 SPI3 Clock TIMER0 Alternate Clock 11 Notes: See note ²
PG_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 6 SPI3 MISO Notes: See note ²
PG_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 7 SPI3 MOSI TIMER0 Alternate Clock 12 Notes: See note ²
PG_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 7 SPI3 Slave Select Output 1 SPI3 Slave Select Input EMSI0 D5 Notes: See note ²
PG_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 9 SPI1 Slave Select Output 6 SHARC1 Core Flag14 UART3 RTS TIMER0 Alternate Clock 1 EMSI0 D6 Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PG_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 10 SHARC2 Core Flag14 UART3 CTS TIMER0 Alternate Clock 3 EMSI0 D7 Notes: See note ²
PG_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 11 SHARC2 Core Flag15 Notes: See note ²
PG_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 12 OSPI0 Slave Select Output 3 SPI2 Slave Select Output 4 SHARC2 Core Flag11 TIMER0 Timer 3 Notes: See note ²
PG_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 13 OSPI0 Slave Select Output 4 SHARC1 Core Flag0 SHARC2 Core Flag 6 Notes: See note ²
PG_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 14 SPI0 Slave Select Output 2 TIMER0 Timer 10 TIMER0 Alternate Clock Input 10 Notes: See note ²
PG_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTG Position 15 SPI2 Ready SPI3 Slave Select Output 5 TIMER0 Timer 11 Notes: See note ²
PH_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 0 SPI3 Slave Select Output 7 TIMER0 Timer 12 TIMER0 Alternate Clock Input 12 Notes: See note ²
PH_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 1 SPI0 Ready TIMER0 Timer 13 TIMER0 Alternate Clock Input 13 Notes: See note ²
PH_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 2 SPI2 Slave Select Output 2 SHARC1 Core Flag 1 TIMER0 Timer 14 Notes: See note ²
PH_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 3 EMAC0 Serial Management Clock TRACE0 Trace D08 Notes: See note ²
PH_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 4 EMAC0 Serial Management Bidirectional Data TRACE0 Trace D09 Notes: See note ²
PH_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 5 EMAC0 Receive Data D0 TRACE0 Trace D10 Notes: See note ²
PH_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 6 EMAC0 Receive Data D1 TRACE0 Trace D11 Notes: See note ²
PH_07	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 7 EMAC0 Receive Reference Clock TRACE0 Trace D12 Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
PH_08	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 8 EMAC0 Receive Data Valid TRACE0 Trace D13 Notes: See note ²
PH_09	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 9 EMAC0 Transmit Data D0 TRACE0 Trace D14 Notes: See note ²
PH_10	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 10 EMAC0 Transmit Data D1 TRACE0 Trace D15 Notes: See note ²
PH_11	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 11 EMAC0 Receive Data D2 Notes: See note ²
PH_12	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 12 EMAC0 Receive Data D3 Notes: See note ²
PH_13	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 13 EMAC0 Transmit Enable Notes: See note ²
PH_14	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 14 EMAC0 Transmit Clock Notes: See note ²
PH_15	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTH Position 15 EMAC0 Transmit Data D2 Notes: See note ²
PI_00	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTI Position 0 EMAC0 Transmit Data D3 Notes: See note ²
PI_01	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTI Position 1 EMAC0 PTP Clock Input 0 SHARC2 Core Flag 0 TWI3 Clock Notes: See note ²
PI_02	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTI Position 2 EMAC0 PTP Aux or MCG Input 0 SHARC2 Core Flag 1 TWI3 Data Notes: See note ²
PI_03	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTI Position 3 EMAC0 Pulse Per Second Output SHARC1 Core Flag 4 TWI1 Clock Notes: See note ²
PI_04	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTI Position 4 EMAC0 Pulse Per Second Output SHARC1 Core Flag 5 TWI1 Data Notes: See note ²
PI_05	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTI Position 5 EMAC0 Pulse Per Second Output OSPI0 Slave Select Output 2 SHARC1 Core Flag 15 TIMER0 Alternate Clock 2 Notes: See note ²
PI_06	InOut	A	Programmable pull-up/pull-down ¹	None	None	VDD_EXT	Desc: PORTI Position 6 EMAC0 Pulse Per Second Output TIMER0 Alternate Clock 14 EMSI0 LED Control Notes: See note ²

ADSP-SC596/ADSP-SC598

Table 21. ADSP-SC596/ADSP-SC598 Designer Quick Reference (Continued)

Signal Name	Type	Driver Type	Internal Termination	Reset Termination	Reset Drive	Power Domain	Description and Notes
SYS_BMODE0	Input	NA	None	None	None	VDD_EXT	Desc: Boot Mode Control 0 Notes: Cannot be left unconnected
SYS_BMODE1	Input	NA	None	None	None	VDD_EXT	Desc: Boot Mode Control 1 Notes: Cannot be left unconnected
SYS_BMODE2	Input	NA	None	None	None	VDD_EXT	Desc: Boot Mode Control 2 Notes: Cannot be left unconnected
SYS_CLKIN0	a	NA	None	None	None	VDD_REF	Desc: Clock/Crystal Input Notes: Cannot be left unconnected
SYS_CLKIN1	a	NA	None	None	None	VDD_REF	Desc: Clock/Crystal Input Notes: Cannot be left unconnected
SYS_CLKOUT	Output	A	None	None	L	VDD_EXT	Desc: Processor Clock Output Notes: No notes
SYS_FAULT	InOut	A	None	None	None	VDD_EXT	Desc: Active-High Fault Output Notes: External pull-down required to keep signal in deasserted state
SYS_FAULT ¹	InOut	A	None	None	None	VDD_EXT	Desc: Active-Low Fault Output Notes: External pull-up required to keep signal in deasserted state
SYS_HWRST	Input	NA	None	None	None	VDD_EXT	Desc: Processor Hardware Reset Control Notes: Cannot be left unconnected
SYS_RESET ²	Output	A	None	None	L	VDD_EXT	Desc: Reset Output Notes: No notes
SYS_XTAL0	a	NA	None	None	None	VDD_REF	Desc: Crystal Output Notes: Leave unconnected if an oscillator provides SYS_CLKIN0
SYS_XTAL1	a		None	None	None	VDD_REF	Desc: Crystal Output Notes: Leave unconnected if an oscillator provides SYS_CLKIN1
VDD_ANA	s		None	None	None		Desc: Analog VDD Notes: No notes
VDD_DMC	s		None	None	None		Desc: DMC VDD Notes: No notes
VDD_EXT	s		None	None	None		Desc: External Voltage Domain Notes: No notes
VDD_INT	s		None	None	None		Desc: Internal Voltage Domain Notes: No notes
VDD_PLL	s		None	None	None		Desc: PLL VDD Notes: Connect to VDD_INT. For lower noise on VDD_PLL, filtering on VDD_INT is recommended before connecting to VDD_PLL.
VDD_REF	s		None	None	None		Desc: External Voltage Domain Notes: No notes

¹Disabled by default.

²When present, the internal pull-up/pull-down design holds the internal path from the pins at the expected logic levels. To pull up or pull down the external pads to the expected logic levels, use external resistors.

SPECIFICATIONS

Specifications are subject to change without notice. For information about product specifications, contact your Analog Devices, Inc., representative.

OPERATING CONDITIONS

All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.

Parameter	Conditions	Min	Nominal	Max	Unit	
V_{DD_INT}	Internal (Core) Supply Voltage	600 MHz \leq CCLK \leq 1 GHz	0.95	1.00	1.05	V
V_{DD_PLL}	PLL Supply Voltage		0.95	1.00	1.05	V
V_{DD_EXT}	External (I/O) Supply Voltage		3.13	3.30	3.47	V
V_{DD_ANA}	Analog Power Supply Voltage		1.71	1.80	1.89	V
$V_{DD_DMC}^1$	DDR3L Controller Supply Voltage		1.34	1.39	1.44	V
	DDR3 Controller Supply Voltage		1.425	1.500	1.575	V
$V_{DD_REF}^2$	External (I/O) Reference Supply Voltage		1.71	1.80	1.89	V
$V_{DDR_VREF}^3$	DDR3 Reference Voltage		$0.49 \times V_{DD_DMC}$	$0.50 \times V_{DD_DMC}$	$0.51 \times V_{DD_DMC}$	V
$V_{DELTAX_EXT_REF}^4$	$(V_{DD_EXT} - V_{DD_REF})$ and $(V_{DD_EXT} - V_{DD_ANA})$		-1.89		+1.89	V
$V_{HADC_REF}^5$	HADC Reference Voltage		1.71	1.80	V_{DD_ANA}	V
V_{HADC0_VINx}	HADC Input Voltage		0		$V_{HADC_REF} + 0.09$	V
V_{IH}^6	High Level Input Voltage	$V_{DD_EXT} = 3.47$ V	2.0			V
$V_{IHCLKIN}^2$	High Level Clock Input Voltage		$0.65 \times V_{DD_REF}$		V_{DD_REF}	V
V_{IL}^6	Low Level Input Voltage	$V_{DD_EXT} = 3.13$ V		0.8		V
$V_{ILCLKIN}^2$	Low Level Clock Input Voltage		-0.30		$+0.35 \times V_{DD_REF}$	V
$V_{IL_DDR3L}^7$	Low Level Input Voltage	$V_{DD_DMC} = 1.34$ V			$V_{DDR_VREF} - 0.175$	V
$V_{IL_DDR3}^7$	Low Level Input Voltage	$V_{DD_DMC} = 1.425$ V			$V_{DDR_VREF} - 0.175$	V
$V_{IH_DDR3L}^7$	High Level Input Voltage	$V_{DD_DMC} = 1.44$ V		$V_{DDR_VREF} + 0.175$		V
$V_{IH_DDR3}^7$	High Level Input Voltage	$V_{DD_DMC} = 1.575$ V		$V_{DDR_VREF} + 0.175$		V
CONSUMER GRADE						
T_J	Junction Temperature 400-Ball BGA_ED		0	125	$^{\circ}$ C	
INDUSTRIAL GRADE						
T_J	Junction Temperature 400-Ball BGA_ED		-40	+125	$^{\circ}$ C	
AUTOMOTIVE GRADE ⁸						
T_J	Junction Temperature 400-Ball BGA_ED		-40	+125	$^{\circ}$ C	

¹ Applies to DDR3L/DDR3 signals.

² Applies to SYS_CLKIN0 pin.

³ Applies to DMC0_VREF0 and DMC0_VREF1 pins. The V_{DDR_VREF} shall be understood as $V_{DDR_VREF}(DC)$. For $V_{DDR_VREF}(AC)$, see [ADSP-SC596/ADSP-SC598 Board Design Guidelines for Dynamic Memory Controller \(EE-441\)](#). To ensure proper operation of the DDR3/3L, all the DDR3/3L guidelines must be strictly followed.

⁴ See [Figure 9](#).

⁵ V_{HADC_VREF} must always be less than V_{DD_ANA} .

⁶ Parameter value applies to all input and bidirectional pins except the DMC pins.

⁷ This parameter applies to all DMC0 pins.

⁸ Automotive application use profile only. Not supported for nonautomotive use. Contact Analog Devices for more information.

ADSP-SC596/ADSP-SC598

Clock Related Operating Conditions

Table 22 describes the core clock, system clock, and peripheral clock timing requirements. The data presented in the table applies to all speed grades except where noted.

Table 22. Clock Operating Conditions

Parameter	Conditions	Min	Typ	Max	Unit	
f_{CCLK}^1	$f_{CCLK} = 2 \times f_{SYSCLK}$	600		1000	MHz	
f_{ARMCLK}	$f_{ARMCLK} = 2 \times f_{SYSCLK}$ or $f_{ARMCLK} = f_{VCOCLK}/3$	600		1200	MHz	
f_{SYSCLK}	SYSCLK Frequency ²	300		500	MHz	
f_{SCLK0}	SCLK0 Frequency	$f_{SYSCLK} = N \times f_{SCLK0}$ where $N = 2$ or 4 or 6	30		125	MHz
f_{SCLK1}	SCLK1 Frequency	$f_{SYSCLK} \geq f_{SCLK1}$		333.33	MHz	
f_{DCLK}	DDR3 Clock (DCLK) Frequency ³	All combinations are supported except for: $[f_{CCLK} > 800 \text{ MHz and } T_j < 0^\circ\text{C and } f_{CCLK}:f_{DCLK} = 2:1]$	300		900	MHz
f_{OCLK}	Output Clock (OCLK) Frequency ⁴			125	MHz	
f_{SD}	eMSI SD Card Controller Clock Frequency			46	MHz	
f_{eMMC}	eMSI eMMC Clock Frequency			50	MHz	
$f_{SYS_CLKOUTJ}$	SYS_CLKOUT Period Jitter ^{5, 6}		± 2		%	
$f_{LCLKTPROG}$	Programmed Link Port Transmit Clock			125	MHz	
$f_{LCLKREXT}$	External Link Port Receive Clock ^{7, 8}	$f_{LCLKREXT} \leq f_{OCLK_0}$		125	MHz	
$f_{PCLKPROG}$	Programmed PPI Clock When Transmitting Data and Frame Sync			62.5	MHz	
$f_{PCLKPROG}$	Programmed PPI Clock When Receiving Data or Frame Sync			50	MHz	
$f_{PCLKEXT}$	External PPI Clock When Receiving Data and Frame Sync ^{7, 8}			62.5	MHz	
$f_{PCLKEXT}$	External PPI Clock Transmitting Data or Frame Sync ^{7, 8}			50	MHz	
$f_{SPTCLKPROG}$	Programmed SPT Clock When Transmitting Data and Frame Sync			62.5	MHz	
$f_{SPTCLKPROG}$	Programmed SPT Clock When Receiving Data or Frame Sync			31.25	MHz	
$f_{SPTCLKEXT}$	External SPT Clock When Receiving Data and Frame Sync ^{7, 8}	$f_{SPTCLKEXT} \leq f_{SCLK0}$		62.5	MHz	
$f_{SPTCLKEXT}$	External SPT Clock Transmitting Data or Frame Sync ^{7, 8}	$f_{SPTCLKEXT} \leq f_{SCLK0}$		31.25	MHz	
$f_{SPICLKPROG}$	Programmed SPI Clock When Transmitting Data	$f_{SPICLK}:f_{SCLK0} \text{ ratio} = 1:1$		75	MHz	
$f_{SPICLKPROG}$	Programmed SPI Clock When Receiving Data	$f_{SPICLK}:f_{SCLK0} \text{ ratio} = 1:1$		75	MHz	
$f_{SPICLKPROG}$	Programmed SPI Clock When Transmitting Data	$f_{SPICLK}:f_{SCLK0} \text{ ratio} = 1:2$		62.5	MHz	
$f_{SPICLKPROG}$	Programmed SPI Clock When Receiving Data	$f_{SPICLK}:f_{SCLK0} \text{ ratio} = 1:2$		62.5	MHz	
$f_{SPICLKEXT}$	External SPI Clock When Receiving Data ^{7, 8}	$f_{SPICLKEXT} \leq f_{CDU_CLK0}$		62.5	MHz	
$f_{SPICLKEXT}$	External SPI Clock When Transmitting Data ^{7, 8}	$f_{SPICLKEXT} \leq f_{CDU_CLK0}$		45	MHz	
$f_{OSPICLKPROG}$	Programmed OSPI Clock Without Data Training			62.5	MHz	
$f_{OSPICLKPROG}$	Programmed OSPI Clock With Data Training and Without DQS			80	MHz	

Table 22. Clock Operating Conditions (Continued)

Parameter	Conditions	Min	Typ	Max	Unit
$f_{OSPICLKPROG}$	Programmed OSPI Clock Without Data Training and With DQS			125	MHz
$f_{TMRCLKEXT}$	External Timer Clock (TMx_CLK)			31.25	MHz
f_{BCLK}	Bit Clock Input to PDM			24.576	MHz
f_{PDM_CLK}	PDM Output Clock			6.144	MHz
f_{USBC0_CLK}	Input Clock From External USB PHY			60	MHz

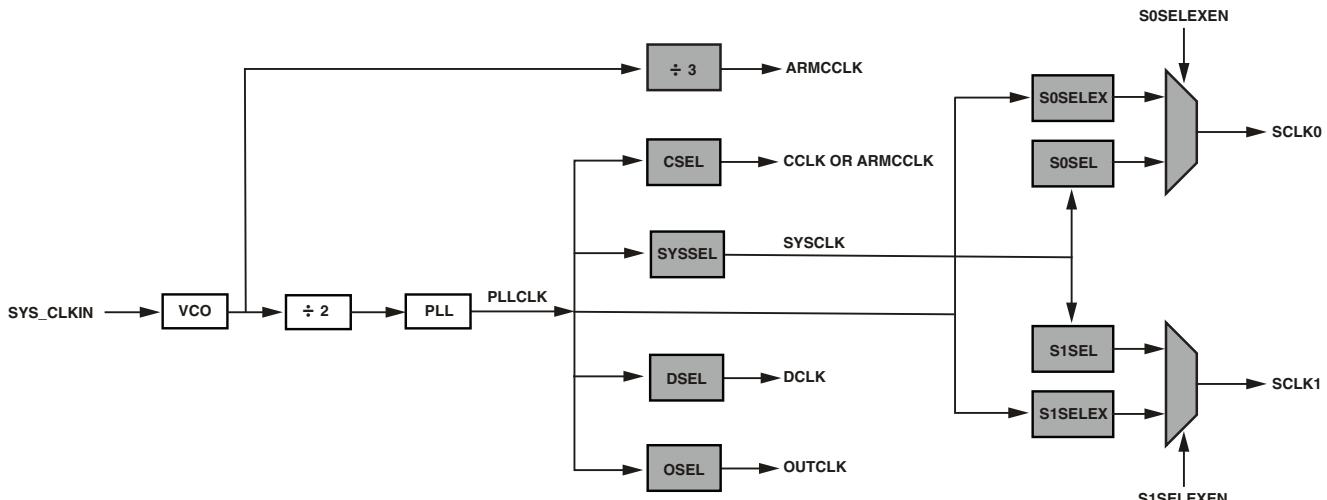
¹The speed grade is printed on the package and can be found in the [Planned Automotive Production Products](#). It represents the maximum allowed CCLK frequency.

²When using MLB, there is a requirement that the f_{SYSCLK} value must be a minimum of 100 MHz for 3-pin mode and for all supported speeds.

³To ensure proper operation of the DDR3/3L, all the DDR3/3L guidelines must be strictly followed. See [ADSP-SC596/ADSP-SC598 Board Design Guidelines for Dynamic Memory Controller \(EE-441\)](#).

⁴ f_{OCLK} must not exceed f_{SCLK0} when selected as SYS_CLKOUT.

⁵SYS_CLKOUT jitter is dependent on the application system design including pin switching activity, board layout, and the jitter characteristics of the SYS_CLKIN source. Due to the dependency on these factors, the measured jitter may be higher or lower than this typical specification for each end application.


⁶The value in the Typ field is the percentage of the SYS_CLKOUT period.

⁷The maximum achievable frequency for any peripheral in external clock mode is dependent on being able to meet the setup and hold times in the AC timing specifications section for that peripheral.

⁸The peripheral external clock frequency must also be less than or equal to the frequency that clocks the peripheral.

Table 23. Phase-Locked Loop (PLL) Operating Conditions

Parameter	Min	Max	Unit
f_{PLLCLK}	1.20	2.00	GHz

REFER TO THE ADSP-SC596/ADSP-SC598 SHARC+ PROCESSOR HARDWARE REFERENCE FOR INFORMATION ABOUT ALLOWED DIVIDER VALUES AND PROGRAMMING MODELS.

Figure 7. Clock Relationships and Divider Values

ADSP-SC596/ADSP-SC598

ELECTRICAL CHARACTERISTICS

All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Unit
V_{OH}	High Level Output Voltage V_{DD_EXT} = minimum, $(I_{OH} = -2.0 \text{ mA}, DS1)^1, (I_{OH} = -4.0 \text{ mA}, DS2)^2$	2.4			V
V_{OL}	Low Level Output Voltage V_{DD_EXT} = minimum, $(I_{OL} = 2.0 \text{ mA}, DS1)^1, (I_{OL} = 4.0 \text{ mA}, DS2)^2$		0.4		V
$V_{OH_XTAL}^3$	High Level Output Voltage V_{DD_REF} = minimum, $I_{OH} = -1.0 \text{ mA}$	1.26			V
$V_{OL_XTAL}^3$	Low Level Output Voltage V_{DD_REF} = minimum, $I_{OL} = 1.0 \text{ mA}$		0.45		V
$V_{OH_DDR3L}^4$	High Level Output Voltage for DDR3L Drive Strength = 40 Ω V_{DD_DDR} = minimum, $I_{OH} = -2.5 \text{ mA}$	1.02			V
$V_{OL_DDR3L}^4$	Low Level Output Voltage for DDR3L Drive Strength = 40 Ω V_{DD_DDR} = minimum, $I_{OL} = 2.5 \text{ mA}$		0.32		V
$V_{OH_DDR3}^5$	High Level Output Voltage for DDR3 Drive Strength = 40 Ω V_{DD_DDR} = minimum, $I_{OH} = -2.5 \text{ mA}$	1.105			V
$V_{OL_DDR3}^5$	Low Level Output Voltage for DDR3 Drive Strength = 40 Ω V_{DD_DDR} = minimum, $I_{OL} = 2.5 \text{ mA}$		0.32		V
$V_{OH_DDR3L}^4$	High Level Output Voltage for DDR3L Drive Strength = 60 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.8 \text{ mA}$	1.02			V
$V_{OL_DDR3L}^4$	Low Level Output Voltage for DDR3L Drive Strength = 60 Ω V_{DD_DDR} = minimum, $I_{OL} = 1.8 \text{ mA}$		0.32		V
$V_{OH_DDR3}^5$	High Level Output Voltage for DDR3 Drive Strength = 60 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.8 \text{ mA}$	1.105			V
$V_{OL_DDR3}^5$	Low Level Output Voltage for DDR3 Drive Strength = 60 Ω V_{DD_DDR} = minimum, $I_{OL} = 1.8 \text{ mA}$		0.32		V
$V_{OH_DDR3L}^4$	High Level Output Voltage for DDR3L Drive Strength = 70 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.5 \text{ mA}$	1.02			V
$V_{OL_DDR3L}^4$	Low Level Output Voltage for DDR3L Drive Strength = 70 Ω V_{DD_DDR} = minimum, $I_{OL} = 1.5 \text{ mA}$		0.32		V
$V_{OH_DDR3}^5$	High Level Output Voltage for DDR3 Drive Strength = 70 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.5 \text{ mA}$	1.105			V
$V_{OL_DDR3}^5$	Low Level Output Voltage for DDR3 Drive Strength = 70 Ω V_{DD_DDR} = minimum, $I_{OL} = 1.5 \text{ mA}$		0.32		V
$V_{OH_DDR3L}^4$	High Level Output Voltage for DDR3L Drive Strength = 90 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.2 \text{ mA}$	1.02			V
$V_{OL_DDR3L}^4$	Low Level Output Voltage for DDR3L Drive Strength = 90 Ω V_{DD_DDR} = minimum, $I_{OL} = 1.2 \text{ mA}$		0.32		V
$V_{OH_DDR3}^5$	High Level Output Voltage for DDR3 Drive Strength = 90 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.2 \text{ mA}$	1.105			V
$V_{OL_DDR3}^5$	Low Level Output Voltage for DDR3 Drive Strength = 90 Ω V_{DD_DDR} = minimum, $I_{OL} = 1.2 \text{ mA}$		0.32		V
$V_{OH_DDR3L}^4$	High Level Output Voltage for DDR3L Drive Strength = 100 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.0 \text{ mA}$	1.02			V
$V_{OL_DDR3L}^4$	Low Level Output Voltage for DDR3L Drive Strength = 100 Ω V_{DD_DDR} = minimum, $I_{OL} = 1.0 \text{ mA}$		0.32		V
$V_{OH_DDR3}^5$	High Level Output Voltage for DDR3 Drive Strength = 100 Ω V_{DD_DDR} = minimum, $I_{OH} = -1.0 \text{ mA}$	1.105			V

Parameter	Conditions	Min	Typ	Max	Unit
$V_{OL_DDR3}^5$	$V_{DD_DDR} = \text{minimum}$, $I_{OL} = 1.0 \text{ mA}$			0.32	V
I_{IH}^6	$V_{DD_EXT} = \text{maximum}$, $V_{IN} = V_{DD_EXT} \text{ maximum}$			10	μA
I_{IL}^6	$V_{DD_EXT} = \text{maximum}$, $V_{IN} = 0 \text{ V}$			10	μA
$I_{IL_PU}^7$	$V_{DD_EXT} = \text{maximum}$, $V_{IN} = 0 \text{ V}$ Pull-Up			200	μA
$I_{IH_PD}^8$	$V_{DD_EXT} = \text{maximum}$, $V_{IN} = V_{DD_EXT} \text{ maximum}$ Pull-Down			200	μA
I_{OZH}^9	$V_{DD_EXT}/V_{DD_DDR} = \text{maximum}$, $V_{IN} = V_{DD_EXT}/V_{DD_DDR} \text{ maximum}$			10	μA
I_{OZL}^9	$V_{DD_EXT}/V_{DD_DDR} = \text{maximum}$, $V_{IN} = 0 \text{ V}$			10	μA
C_{IN}^{10}	$T_J = 25^\circ\text{C}$			5	pF
I_{DD_IDLE}	V_{DD_INT} Current in Idle $f_{CCLK(\text{SHARC1/SHARC2})} = 1000 \text{ MHz}$ $f_{CCLK(\text{A55})} = 1200 \text{ MHz}$ $ASF_{\text{SHARC1}} = 0.43$ $ASF_{\text{SHARC2}} = 0.43$ $ASF_{\text{A55}} = 0.04$ $f_{\text{SYSCLK}} = 500 \text{ MHz}$ $f_{\text{SCLK0}} = 125 \text{ MHz}$ $f_{\text{SCLK1}} = 333.33 \text{ MHz}$ (Other clocks are disabled) No peripheral or DMA activity $T_J = 25^\circ\text{C}$ $V_{DD_INT} = 1.0 \text{ V}$		1286		mA
I_{DD_TYP}	V_{DD_INT} Current $f_{CCLK(\text{SHARC1/SHARC2})} = 1000 \text{ MHz}$ $f_{CCLK(\text{A55})} = 1200 \text{ MHz}$ $ASF_{\text{SHARC1}} = 1$ $ASF_{\text{SHARC2}} = 1$ $ASF_{\text{A55}} = 1$ $f_{\text{SYSCLK}} = 500 \text{ MHz}$ $f_{\text{SCLK0}} = 125 \text{ MHz}$ $f_{\text{SCLK1}} = 333.33 \text{ MHz}$ (Other clocks are disabled) DMA data rate = 453 MB/s $T_J = 25^\circ\text{C}$ $V_{DD_INT} = 1.0 \text{ V}$		2669		mA
I_{DD_IDLE}	V_{DD_INT} Current in Idle $f_{CCLK(\text{SHARC1/SHARC2})} = 800 \text{ MHz}$ $f_{CCLK(\text{A55})} = 1200 \text{ MHz}$ $ASF_{\text{SHARC1}} = 0.43$ $ASF_{\text{SHARC2}} = 0.43$ $ASF_{\text{A55}} = 0.04$ $f_{\text{SYSCLK}} = 500 \text{ MHz}$ $f_{\text{SCLK0}} = 125 \text{ MHz}$ $f_{\text{SCLK1}} = 333.33 \text{ MHz}$ (Other clocks are disabled) No peripheral or DMA activity $T_J = 25^\circ\text{C}$ $V_{DD_INT} = 1.0 \text{ V}$		1163		mA

ADSP-SC596/ADSP-SC598

Parameter	Conditions	Min	Typ	Max	Unit
I_{DD_TYP}	V_{DD_INT} Current		2383		mA
	$f_{CCLK(SHARC1/SHARC2)} = 800$ MHz $f_{CCLK(A55)} = 1200$ MHz $ASF_{SHARC1} = 1$ $ASF_{SHARC2} = 1$ $ASF_{A55} = 1$ $f_{SYSCLK} = 500$ MHz $f_{SCLK0} = 125$ MHz $f_{SCLK1} = 333.33$ MHz (Other clocks are disabled) DMA data rate = 453 MB/s $T_J = 25^\circ C$ $V_{DD_INT} = 1.0$ V				
I_{DD_IDLE}	V_{DD_INT} Current in Idle		1040		mA
	$f_{CCLK(SHARC1/SHARC2)} = 600$ MHz $f_{CCLK(A55)} = 1200$ MHz $ASF_{SHARC1} = 0.43$ $ASF_{SHARC2} = 0.43$ $ASF_{A55} = 0.04$ $f_{SYSCLK} = 500$ MHz $f_{SCLK0} = 125$ MHz $f_{SCLK1} = 333.33$ MHz (Other clocks are disabled) No peripheral or DMA activity $T_J = 25^\circ C$ $V_{DD_INT} = 1.0$ V				
I_{DD_TYP}	V_{DD_INT} Current		2097		mA
	$f_{CCLK(SHARC1/SHARC2)} = 600$ MHz $f_{CCLK(A55)} = 1200$ MHz $ASF_{SHARC1} = 1$ $ASF_{SHARC2} = 1$ $ASF_{A55} = 1$ $f_{SYSCLK} = 500$ MHz $f_{SCLK0} = 125$ MHz $f_{SCLK1} = 333.33$ MHz (Other clocks are disabled) DMA data rate = 453 MB/s $T_J = 25^\circ C$ $V_{DD_INT} = 1.0$ V				
$I_{DD_INT}^{11}$	V_{DD_INT} Current			$I_{DD_INT_TOT}$ See equation in the Total Internal Power Dissipation section.	mA

¹ Applies to all output and bidirectional pins operating at less than or equal to 62.5 MHz, except DMC and SYS_XTAL0.

² Applies to all output and bidirectional pins operating above 62.5 MHz and less than or equal to 125 MHz, except DMC.

³ Applies to SYS_XTAL0 pin.

⁴ Applies to all DMC output and bidirectional signals in DDR3L mode.

⁵ Applies to all DMC output and bidirectional signals in DDR3 mode.

⁶ Applies to input pins: SYS_BMODE2-0, SYS_CLKIN, and SYS_HWRST.

⁷ Applies to input pins with internal pull-ups: JTG_TDI, JTG_TMS, and JTG_TCK.

⁸ Applies to JTAK_TRST signal.

⁹ Applies to signals: PA15 to PA0, PB15 to PB0, PC7 to PC0, DAI0_PINx, DAI1_PINx, DMC0_DQx, DMC0_LDQS, DMC0_UDQS, $\overline{DMC0_LDQS}$, $\overline{DMC0_UDQS}$, SYS_FAULT, and JTG_TDO.

¹⁰ Applies to all signal pins.

¹¹ See [Estimating Power for ADSP-SC596/ADSP-SC598 SHARC+ Processors \(EE-440\)](#) for further information.

Total Internal Power Dissipation

Total power dissipation has two components:

- Static, including leakage current
- Dynamic, due to transistor switching characteristics for each clock domain

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. The following equation describes the internal current consumption.

$$I_{DD_INT_TOT} = I_{DD_INT_STATIC} + I_{DD_INT_CCLK_SHARC1_DYN} + I_{DD_INT_CCLK_SHARC2_DYN} + I_{DD_INT_CCLK_A55_DYN} + I_{DD_INT_DCLK_DYN} + I_{DD_INT_SYSCLK_DYN} + I_{DD_INT_SCLK0_DYN} + I_{DD_INT_SCLK1_DYN} + I_{DD_INT_OCLK_DYN} + I_{DD_INT_ACCL_DYN} + I_{DD_INT_DMA_DR_DYN}$$

where $I_{DD_INT_STATIC}$ is the sole contributor to the static power dissipation component and is specified as a function of voltage (V_{DD_INT}) and junction temperature (T_J) in [Table 24](#).

Table 24. Static Current—I_{DD}_INT_STATIC (mA)

T_J (°C)	Voltage (V_{DD_INT})		
	0.95 V	1.00 V	1.05 V
-40	23	30	40
-20	38	49	64
-10	51	65	83
0	71	88	111
+10	98	120	149
+25	159	192	233
+40	258	307	367
+55	410	482	569
+70	643	748	874
+85	994	1147	1332
+100	1519	1747	2022
+105	1754	2016	2329
+115	2312	2660	3078
+125	3056	3524	4100

The other ten addends in the $I_{DD_INT_TOT}$ equation comprise the dynamic power dissipation component and fall into four broad categories: application dependent currents, clock currents, currents from high speed peripheral operation, and data transmission currents.

Application Dependent Current

The application dependent currents include the dynamic current in the core clock domain of the two SHARC+ cores and the Arm Cortex-A55, as well as the dynamic current in the accelerator block.

Dynamic current consumed by the core is subject to an activity scaling factor (ASF) that represents application code running on the processor core (see [Table 25](#) and [Table 26](#)). The ASF is combined with the CCLK frequency and V_{DD_INT} dependent dynamic current data in [Table 27](#) to calculate this portion of the total dynamic power dissipation component.

$$I_{DD_INT_CCLK_SHARC1_DYN} = \text{Table 27} \times \text{ASF}_{\text{SHARC1}}$$

$$I_{DD_INT_CCLK_SHARC2_DYN} = \text{Table 27} \times \text{ASF}_{\text{SHARC2}}$$

$$I_{DD_INT_CCLK_A55_DYN} = \text{Table 28} \times \text{ASF}_{\text{A55}}$$

Table 25. Activity Scaling Factors for the SHARC+® Core 1 and Core 2 (ASF_{SHARC1} and ASF_{SHARC2})

I_{DD}_INT Power Vector	ASF
I _{DD} -LS	0.28
I _{DD} -IDLE	0.43
I _{DD} -NOP	0.57
I _{DD} -TYP_3070	0.79
I _{DD} -TYP_5050	0.89
I _{DD} -TYP_7030	1
I _{DD} -PEAK_100	1.1

Table 26. Activity Scaling Factors for the Arm® Cortex®-A55 Core (ASF_{A55})

I_{DD}_INT Power Vector	ASF
I _{DD} -IDLE	0.04
I _{DD} -DHRystone	0.45
I _{DD} -TYP_2575	0.37
I _{DD} -TYP_5050	0.79
I _{DD} -TYP_7525	1
I _{DD} -PEAK_100	1.26

ADSP-SC596/ADSP-SC598

Table 27. Dynamic Current for SHARC+® Core
(mA, with ASF = 1.00)

f _{CCLK} (MHz)	Voltage (V _{DD_INT})		
	0.95 V	1.00 V	1.05 V
600	407	428	450
650	441	464	487
700	475	500	525
750	509	536	562
800	543	571	600
850	577	607	637
900	611	643	675
950	644	678	712
1000	678	714	750

Table 28. Dynamic Current for Arm® Cortex®-A55 Core
(mA, with ASF = 1.00)

f _{CCLK} (MHz)	Voltage (V _{DD_INT})		
	0.95 V	1.00 V	1.05 V
600	267	281	295
650	289	304	319
700	311	328	344
750	333	351	368
800	356	374	393
850	378	398	418
900	400	421	442
950	422	445	467
1000	445	468	491
1050	467	491	516
1100	489	515	540
1150	511	538	565
1200	533	561	590

Clock Current

The dynamic clock currents provide the total power dissipated by all transistors switching in the clock paths. The power dissipated by each clock domain is dependent on voltage (V_{DD_INT}), operating frequency, and a unique scaling factor.

$$I_{DD_INT_SYSCLK_DYN} (\text{mA}) = 0.792 \times f_{SYSCLK} (\text{MHz}) \times V_{DD_INT} (\text{V})$$

$$I_{DD_INT_SCLK0_DYN} (\text{mA}) = 0.451 \times f_{SCLK0} (\text{MHz}) \times V_{DD_INT} (\text{V})$$

$$I_{DD_INT_SCLK1_DYN} (\text{mA}) = 0.014 \times f_{SCLK1} (\text{MHz}) \times V_{DD_INT} (\text{V})$$

$$I_{DD_INT_DCLK_DYN} (\text{mA}) = 0.097 \times f_{DCLK} (\text{MHz}) \times V_{DD_INT} (\text{V})$$

$$I_{DD_INT_OCLK_DYN} (\text{mA}) = 0.108 \times f_{OCLK} (\text{MHz}) \times V_{DD_INT} (\text{V})$$

Data Transmission Current

The data transmission current represents the power dissipated when moving data throughout the system via DMA. This current is proportional to the data rate. Refer to the power calculator available with [Estimating Power for ADSP-SC596/ADSP-SC598 SHARC+ Processors \(EE-440\)](#) to estimate I_{DD_INT_DMA_DR_DYN} based on the bandwidth of the data transfer.

HADC

HADC Electrical Characteristics

Table 29. HADC Electrical Characteristics

Parameter	Conditions	Typ	Unit
I _{DD_HADC_IDLE}	Current consumption on V _{DD_HADC} HADC is powered on, but not converting	2	mA
I _{DD_HADC_ACTIVE}	Current consumption on V _{DD_HADC} during a conversion	2.5	mA
I _{DD_HADC_POWERDOWN}	Current consumption on V _{DD_HADC} Analog circuitry of the HADC is powered down	40	μA

HADC DC Accuracy

Table 30. HADC DC Accuracy for BGA_ED¹

Parameter	Typ	Unit ²
Resolution	10	Bits
No Missing Codes (NMC)	10	Bits
Integral Nonlinearity (INL)	±2	LSB
Differential Nonlinearity (DNL)	±1	LSB
Offset Error	±10	LSB
Offset Error Matching	±10	LSB
Gain Error	±3	LSB
Gain Error Matching	±5	LSB

¹See the [Operating Conditions](#) section for the HADC0_VINx specification.

²LSB = HADC0_VREFP ÷ 1024.

HADC Timing Specifications

Table 31. HADC Timing Specifications

Parameter	Typ	Max	Unit
Conversion Time ¹	20 × T _{SAMPLE}		μs
Throughput Range		1	MSPS
T _{WAKEUP}		100	μs

¹Refer to the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#) for additional information about T_{SAMPLE}.

TMU

TMU Characteristics

Table 32. TMU Characteristics

Parameter	Typ	Unit
Resolution	1	°C
Accuracy	±6	°C

Table 33. TMU Gain and Offset

Junction Temperature Range	TMU_GAIN	TMU_OFFSET
-40°C to +40°C	Contact Analog Devices, Inc.	
40°C to 85°C	Contact Analog Devices, Inc.	
85°C to 125°C	Contact Analog Devices, Inc.	

ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed in Table 34 may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 34. Absolute Maximum Ratings

Parameter	Rating
Internal (Core) Supply Voltage (V _{DD_INT})	-0.3 V to +1.05 V
PLL Supply Voltage (V _{DD_PLL})	-0.3 V to +1.05 V
External (I/O) Supply Voltage (V _{DD_EXT})	-0.3 V to +3.47 V
External (I/O) Reference Supply Voltage (V _{DD_REF})	-0.3 V to +1.89 V
(V _{DD_EXT} - V _{DD_REF}) and (V _{DD_EXT} - V _{DD_ANA}) (V _{DELTA_EXT_REF})	-1.89 V to +1.89 V
DDR3 Controller Supply Voltage (V _{DD_DMC})	-0.3 V to +1.60 V
Analog Supply Voltage (V _{DD_ANA})	-0.3 V to +1.89 V
HADC Reference Voltage (V _{HADC_REF})	-0.3 V to +1.89 V
DDR3 Input Voltage ¹	-0.3 V to +1.60 V
Digital Input Voltage ^{1, 2}	-0.3 V to +3.47 V
TWI Input Voltage ^{1, 3}	-0.3 V to +3.47 V
Output Voltage Swing	-0.3 V to V _{DD_EXT} +0.5 V
Analog Input Voltage ⁴	-0.2 V to V _{DD_ANA} +0.09 V
I _{OH} /I _{OL} Current per Signal ²	6 mA (maximum)
Storage Temperature Range	-65°C to +150°C
Junction Temperature While Biased	125°C

¹ Applies only when the related power supply (V_{DD_DMC} or V_{DD_EXT}) is within specification. When the power supply is below specification, the range is the voltage being applied to that power domain ± 0.2 V.

² Applies to 100% transient duty cycle.

³ Applies to TWI_SCL and TWI_SDA.

⁴ Applies only when V_{DD_ANA} is within specifications and ≤ 1.8 V. When V_{DD_ANA} is within specifications and > 1.8 V, the maximum rating is 1.89 V. When V_{DD_ANA} is below specifications, the range is V_{DD_ANA} ± 0.09 V.

Table 35. Maximum Duty Cycle for Input Transient Voltage for V_{DD_INT} and V_{DD_EXT}

V _{DD_INT} (V) ¹	V _{DD_EXT} (V) ¹	Maximum Duty Cycle ²
1.120		5%
1.103		10%
1.086		20%
1.077		30%
1.065		50%
1.056		75%
1.050	3.470	100%

¹ The individual values cannot be combined for analysis of a single instance of overshoot or undershoot. The worst case observed value must fall within one of the voltages specified and the total duration of the overshoot or undershoot (exceeding the 100% case) must be less than or equal to the corresponding duty cycle.

² Duty cycle refers to the percentage of time the signal exceeds the value for the 100% case. This is equivalent to the measured duration of a single instance of overshoot or undershoot as a percentage of the period of occurrence.

Table 36. Maximum Duty Cycle for Input Transient Voltage

3.3 V V _{IN} Max (V) ¹	1.8 V V _{IN} Max (V) ¹	Maximum Duty Cycle ²
3.47	1.89	100%

¹ The individual values cannot be combined for analysis of a single instance of overshoot or undershoot. The worst case observed value must fall within one of the voltages specified and the total duration of the overshoot or undershoot (exceeding the 100% case) must be less than or equal to the corresponding duty cycle.

² Duty cycle refers to the percentage of time the signal exceeds the value for the 100% case. This is equivalent to the measured duration of a single instance of overshoot or undershoot as a percentage of the period of occurrence.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADSP-SC596/ADSP-SC598

TIMING SPECIFICATIONS

All specifications and characteristics apply across the entire operating conditions range unless otherwise noted.

Power-Up Reset Timing

Table 37 and Figure 8 show the relationship between power supply startup and processor reset timing, as relating to the clock generation unit (CGU) and the reset control unit (RCU).

In Figure 8, the $V_{DD_SUPPLIES}$ are V_{DD_INT} , V_{DD_EXT} , V_{DD_DMC} , V_{DD_REF} , and V_{DD_ANA} . There are some considerations that system design must take into account:

1. The $V_{DELTA_EXT_REF}$ specification must be met at all times, including during power-up reset and when powering down the device (Figure 9).
2. Any I/O pin operating in the V_{DD_EXT} power domain, such as $\overline{SYS_HWRST}$, $\overline{SYS_RESOUT}$, and so on, may actually momentarily drive until the $V_{DD_SUPPLIES}$ rail is powered up. Systems sharing these signals on the board must determine if there are any issues that need to be addressed based on this behavior.

Table 37. Power-Up Reset Timing

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
$t_{RST_IN_PWR}$	$11 \times t_{CKIN}$		ns
t_{PWR_UP}	$V_{DD_SUPPLIES}$ Power Ramp Up	100	μ s
t_{PWR_DOWN}	$V_{DD_SUPPLIES}$ Power Ramp Down	100	μ s

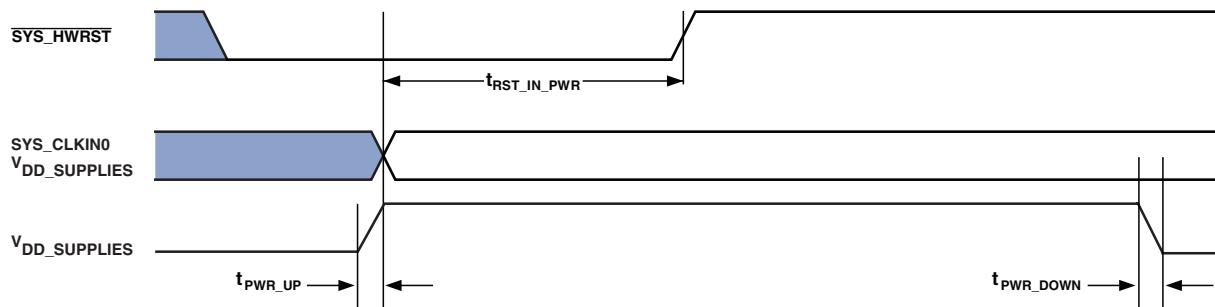


Figure 8. Power-Up Reset Timing

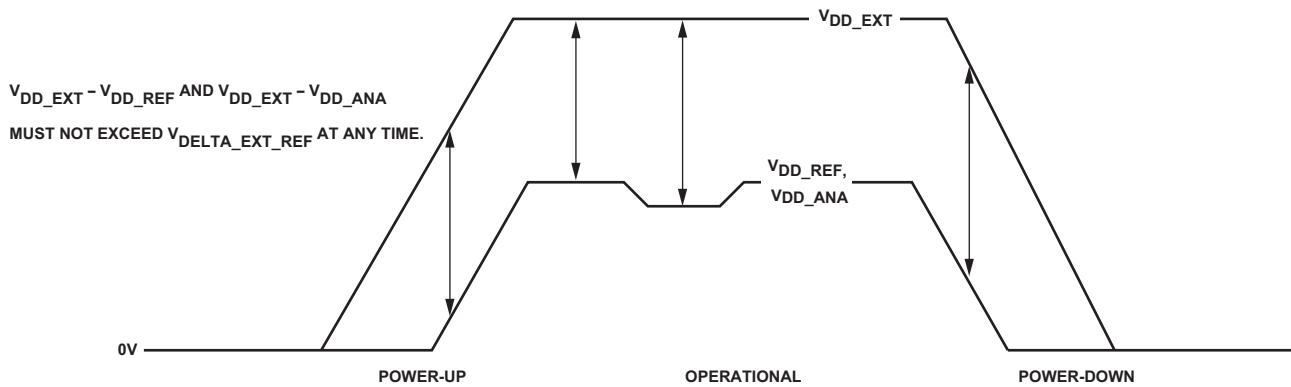


Figure 9. Power-Up and Power-Down Voltage Delta Requirement

Clock and Reset Timing

Table 38 and Figure 10 describe clock and reset operations related to the CGU and RCU. Per the CCLK, SYSCLK, SCLKx, DCLK, and OCLK timing specifications in Table 22 (Clock Operating Conditions), combinations of SYS_CLKIN0 and clock multipliers must not select clock rates in excess of the maximum instruction rate of the processor.

Table 38. Clock and Reset Timing

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
f_{CKIN}	SYS_CLKIN0 Frequency (Crystal) ^{1,2}	20	30	MHz
	SYS_CLKIN0 Frequency (External SYS_CLKIN0) ^{1,2}	20	30	MHz
t_{CKINL}	SYS_CLKIN0 Low Pulse ¹	16.67		ns
t_{CKINH}	SYS_CLKIN0 High Pulse ¹	16.67		ns
t_{WRST}	RESET Asserted Pulse Width Low ³	11 \times t_{CKIN}		ns

¹ Applies to PLL bypass mode and PLL nonbypass mode.

² The t_{CKIN} period (see Figure 10) equals $1/f_{CKIN}$.

³ Applies after power-up sequence is complete. See Table 37 and Figure 8 for power-up reset timing.

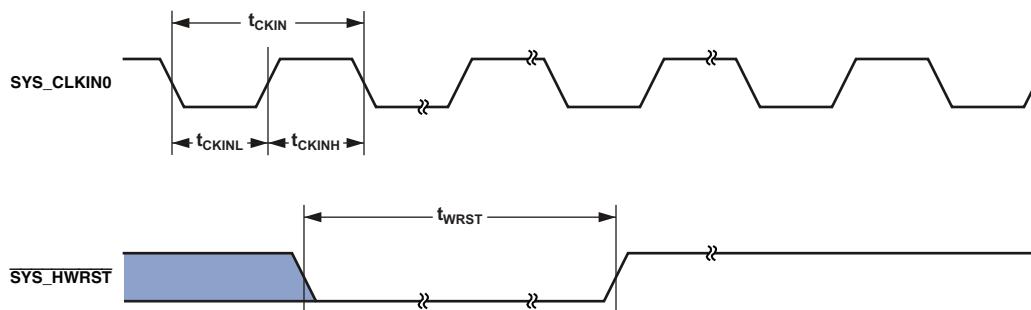


Figure 10. Clock and Reset Timing

Dynamic Memory Controller (DMC)—Clock, Control, Write and Read Cycle Timing

The DMC clock, control, write and read timings comply with the JEDEC standards. To ensure proper operation of the DDR3/3L, all DDR3/3L guidelines must be strictly followed. See [ADSP-SC596/ADSP-SC598 Board Design Guidelines for Dynamic Memory Controller \(EE-441\)](#).

ADSP-SC596/ADSP-SC598

Link Ports (LPs)

In LP receive mode, the LP clock is supplied externally and is called $f_{LCLKREXT}$, therefore the period can be represented by

$$t_{LCLKREXT} = \frac{1}{f_{LCLKREXT}}$$

In LP transmit mode, the programmed LP clock ($f_{LCLKTPROG}$) frequency in megahertz is set by the following equation where **VALUE** is a field in the LP_DIV register that can be set from 1 to 255:

$$f_{LCLKTPROG} = \frac{f_{CDU_CLK08}}{(\text{VALUE} \times 2)}$$

In the case where **VALUE** = 0, $f_{LCLKTPROG} = f_{CDU_CLK08}$. For all settings of **VALUE**, the following equation is true:

$$t_{LCLKTPROG} = \frac{1}{f_{LCLKTPROG}}$$

Calculation of the link receiver data setup and hold relative to the link clock is required to determine the maximum allowable skew that can be introduced in the transmission path length difference between LPx_Dx and LPx_CLK. Setup skew is the maximum delay that can be introduced in LPx_Dx relative to LPx_CLK (setup skew = $t_{LCLKTWH}$ minimum – t_{DLDCH} – t_{SLDCL}). Hold skew is the maximum delay that can be introduced in LPx_CLK relative to LPx_Dx (hold skew = $t_{LCLKTWL}$ minimum – t_{HLDCH} – t_{HLDCL}). See [Table 40](#) for LP transmit timing.

Table 39. LPs—Receive¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
$f_{LCLKREXT}$	LPx_CLK Frequency	125	MHz
t_{SLDCL}	Data Setup Before LPx_CLK Low	1.5	ns
t_{HLDCL}	Data Hold After LPx_CLK Low	1.4	ns
t_{LCLKEW}	LPx_CLK Period ²	$t_{LCLKREXT} - 1$	ns
$t_{LCLKRWL}$	LPx_CLK Width Low ²	$0.5 \times t_{LCLKREXT}$	ns
$t_{LCLKRWH}$	LPx_CLK Width High ²	$0.5 \times t_{LCLKREXT}$	ns
<i>Switching Characteristic</i>			
t_{DLALC}	LPx_ACK Low Delay After LPx_CLK Low ³	$1.5 \times t_{CDU_CLK08} + 4$	$2.5 \times t_{CDU_CLK08} + 12$
ns			

¹ Specifications apply to LP0 and LP1.

² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external LPx_CLK. For the external LPx_CLK ideal maximum frequency, see the $f_{LCLKREXT}$ specification in [Table 22](#). For LPx_CLK generated by ADSP-SC5xx/ADSP-215xx link ports transmit and connected to link ports receive, the width or period requirement can be taken from [Table 40](#), LPs—Transmit.

³ LPx_ACK goes low with t_{DLALC} relative to fall of LPx_CLK after first byte, but does not go low if the link buffer of the receiver is not about to fill.

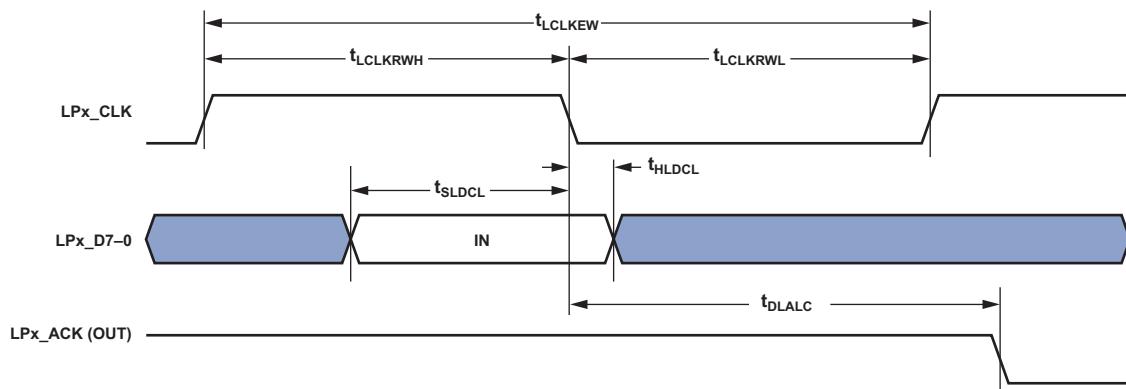


Figure 11. LPs—Receive

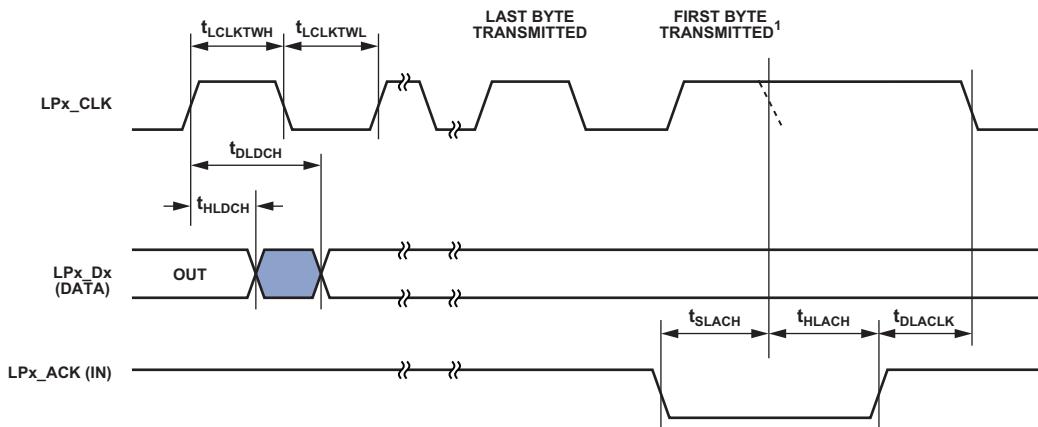

ADSP-SC596/ADSP-SC598

Table 40. LPs—Transmit¹

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
tSLACH	LPx_ACK Setup Before LPx_CLK Low	2 × t _{CDU_CLK08} + 13.5		ns
tHLACH	LPx_ACK Hold After LPx_CLK Low	-2.5		ns
<i>Switching Characteristics</i>				
tDLDCH	Data Delay After LPx_CLK High		2.23	ns
tHLDCH	Data Hold After LPx_CLK High	-1.04		ns
tLCLKTWL ²	LPx_CLK Width Low	0.4 × t _{LCLKTPROG}	0.63 × t _{LCLKTPROG}	ns
tLCLKTWH ²	LPx_CLK Width High	0.45 × t _{LCLKTPROG}	0.63 × t _{LCLKTPROG}	ns
tLCLKTW ²	LPx_CLK Period	N × t _{LCLKTPROG} - 0.8		ns
tDLACKL	LPx_CLK Low Delay After LPx_ACK High	t _{CDU_CLK08} + 4	2 × t _{CDU_CLK08} + 1 × t _{CDU_CLK08} + 10	ns

¹ Specifications apply to LP0 and LP1.

² See Table 22 for details on the minimum period that can be programmed for f_{LCLKTPROG}.

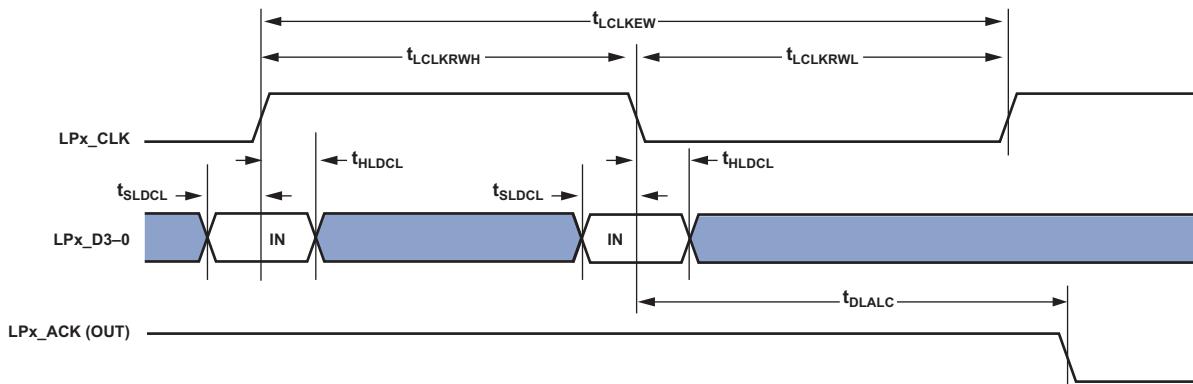
NOTES

The t_{SLACH} and t_{HLACH} specifications apply only to the LPx_CLK falling edge. If these specifications are met, LPx_CLK extends and the dotted LPx_CLK falling edge does not occur as shown. The position of the dotted falling edge can be calculated using the t_{LCLKTWH} specification. t_{LCLKTWH} Min must be used for t_{SLACH} and t_{LCLKTWH} Max for t_{HLACH}.

Figure 12. LPs—Transmit

LPs DDR Mode

Link ports DDR mode is a same edge protocol. It drives and samples data on the same edge of the clock. Positive-edge-driven data from Tx is sampled on the same positive edge by Rx, and negative-edge-driven data from Tx is sampled on the same negative edge by Rx.


Table 41. LPs DDR—Receive¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
$f_{LCLKREXT}$		125	MHz
t_{SLDCL}	0.85		ns
t_{HLDCL}	1.16		ns
t_{LCLKEW}	$t_{LCLKREXT} - 1$		ns
$t_{LCLKRWL}$	$0.5 \times t_{LCLKREXT}$		ns
$t_{LCLKRWH}$	$0.5 \times t_{LCLKREXT}$		ns
<i>Switching Characteristic</i>			
t_{DLALC}	$1.5 \times t_{CDU_CLK08} + 4$	$2.5 \times t_{CDU_CLK08} + 12$	ns

¹ Specifications apply to LP0 and LP1.

² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external LPx_CLK. For the external LPx_CLK ideal maximum frequency, see the $f_{LCLKREXT}$ specification in [Table 22](#). For LPx_CLK generated by ADSP-SC5xx/ADSP-215xx link ports transmit and connected to link ports receive, the width or period requirement can be taken from [Table 42](#), LPs DDR—Transmit.

³ LPx_ACK goes low with t_{DLALC} relative to fall of LPx_CLK after first byte, but does not go low if the link buffer of the receiver is not about to fill.

Figure 13. LPs DDR—Receive

ADSP-SC596/ADSP-SC598

Table 42. LPs DDR—Transmit¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
tSLACH LPx_ACK Setup Before LPx_CLK Low	$2 \times t_{CDU_CLK08} + 13.5$		ns
tHLACH LPx_ACK Hold After LPx_CLK Low	-2.5		ns
<i>Switching Characteristics</i>			
tDLDCH Data Delay After LPx_CLK		2.65	ns
tHLDCH Data Hold After LPx_CLK	1.16		ns
tLCLKTWL ² LPx_CLK Width Low	$0.45 \times t_{LCLKTPROG}$	$0.55 \times t_{LCLKTPROG}$	ns
tLCLKTWH ² LPx_CLK Width High	$0.45 \times t_{LCLKTPROG}$	$0.55 \times t_{LCLKTPROG}$	ns
tLCLKTW ² LPx_CLK Period	$N \times t_{LCLKTPROG} - 0.8$		ns
tDLACLK LPx_CLK Low Delay After LPx_ACK High	$t_{CDU_CLK08} + 4$	$2 \times t_{CDU_CLK08} + 1 \times t_{CDU_CLK08} + 10$	ns

¹ Specifications apply to LP0 and LP1.

² See Table 22 for details on the minimum period that can be programmed for $f_{LCLKTPROG}$.

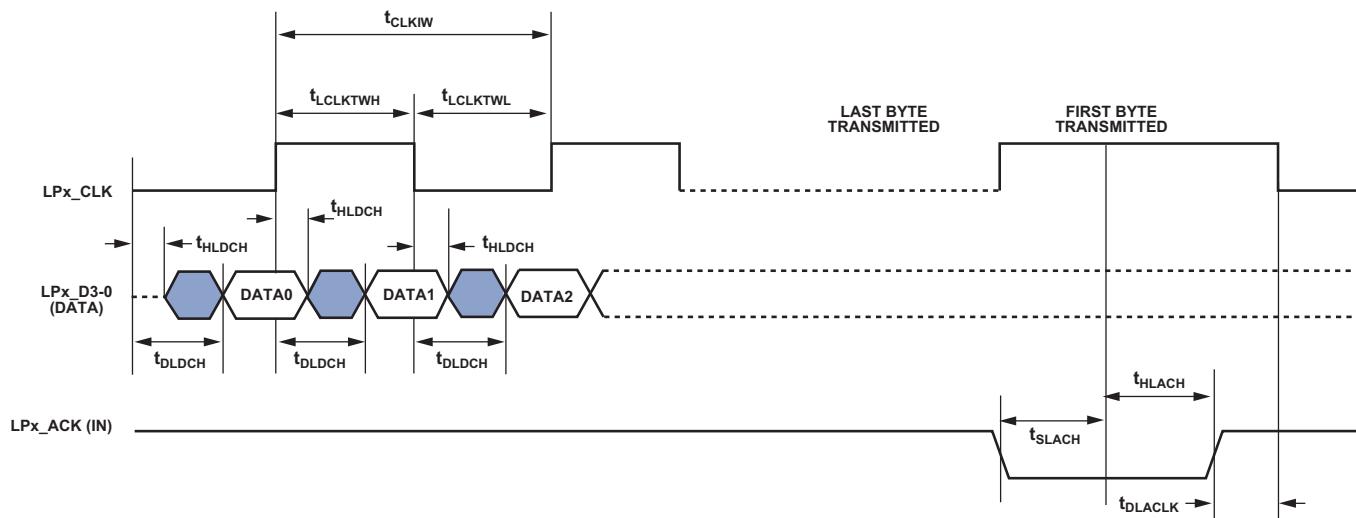


Figure 14. LPs DDR—Transmit

Serial Ports (SPORTs)

To determine whether a device is compatible with the SPORT at clock speed n, the following specifications must be confirmed: frame sync delay and frame sync setup and hold; data delay and data setup and hold; and serial clock (SPTx_CLK) width. In [Figure 15](#), either the rising edge or the falling edge of SPTx_A/BCLK (external or internal) can be used as the active sampling edge.

When externally generated, the SPORT clock is called $f_{SPTCLKEXT}$:

$$t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$$

When internally generated, the programmed SPORT clock ($f_{SPTCLKPROG}$) frequency in megahertz is set by the following equation:

$$f_{SPTCLKPROG} = \frac{f_{SCLK0}}{(CLKDIV + 1)}$$

$$t_{SPTCLKPROG} = \frac{1}{f_{SPTCLKPROG}}$$

where $CLKDIV$ is a field in the SPORT_DIV register that can be set from 0 to 65,535.

Table 43. SPORTs—External Clock¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{SFSE} Frame Sync Setup Before SPTx_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ²	2		ns
t_{HFSE} Frame Sync Hold After SPTx_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ²	3		ns
t_{SDRE} Receive Data Setup Before Receive SPTx_CLK ²	2		ns
t_{HDRE} Receive Data Hold After SPTx_CLK ²	3		ns
$t_{SPTCLKW}$ SPTx_CLK Width ³	0.5 × $t_{SPTCLKEXT} - 1.5$		ns
t_{SPTCLK} SPTx_CLK Period ³	$t_{SPTCLKEXT} - 1.5$		ns
<i>Switching Characteristics</i>			
t_{DFSE} Frame Sync Delay After SPTx_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ⁴		12	ns
t_{HOFSE} Frame Sync Hold After SPTx_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ⁴	2		ns
t_{DDTE} Transmit Data Delay After Transmit SPTx_CLK ⁴		12	ns
t_{HDTE} Transmit Data Hold After Transmit SPTx_CLK ⁴	2		ns

¹ Specifications apply to all four SPORTs.

² Referenced to sample edge.

³ This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the ideal maximum external SPTx_CLK. For the external SPTx_CLK ideal maximum frequency, see the $f_{SPTCLKEXT}$ specification in [Table 22](#).

⁴ Referenced to drive edge.

ADSP-SC596/ADSP-SC598

Table 44. SPORTs—Internal Clock¹

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
tsFSI	Frame Sync Setup Before SPTx_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ²	11		ns
tHFSI	Frame Sync Hold After SPTx_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ²	-0.5		ns
tSDRI	Receive Data Setup Before SPTx_CLK ²	3.4		ns
tHDRI	Receive Data Hold After SPTx_CLK ²	3.6		ns
<i>Switching Characteristics</i>				
tDFSI	Frame Sync Delay After SPTx_CLK (Internally Generated Frame Sync in Transmit or Receive Mode) ³		3.5	ns
tHOFSI	Frame Sync Hold After SPTx_CLK (Internally Generated Frame Sync in Transmit or Receive Mode) ³	-3		ns
tDDTI	Transmit Data Delay After SPTx_CLK ³		3.5	ns
tHDTI	Transmit Data Hold After SPTx_CLK ³	-3		ns
tsPTCLKIW	SPTx_CLK Width ⁴	0.5 × t _{SPTCLKPROG} – 1.5		ns
tsPTCLKW	SPTx_CLK Period ⁴	t _{SPTCLKPROG} – 1.5		ns

¹Specifications apply to all four SPORTs.

²Referenced to the sample edge.

³Referenced to drive edge.

⁴See Table 22 for details on the minimum period that can be programmed for f_{SPTCLKPROG}.

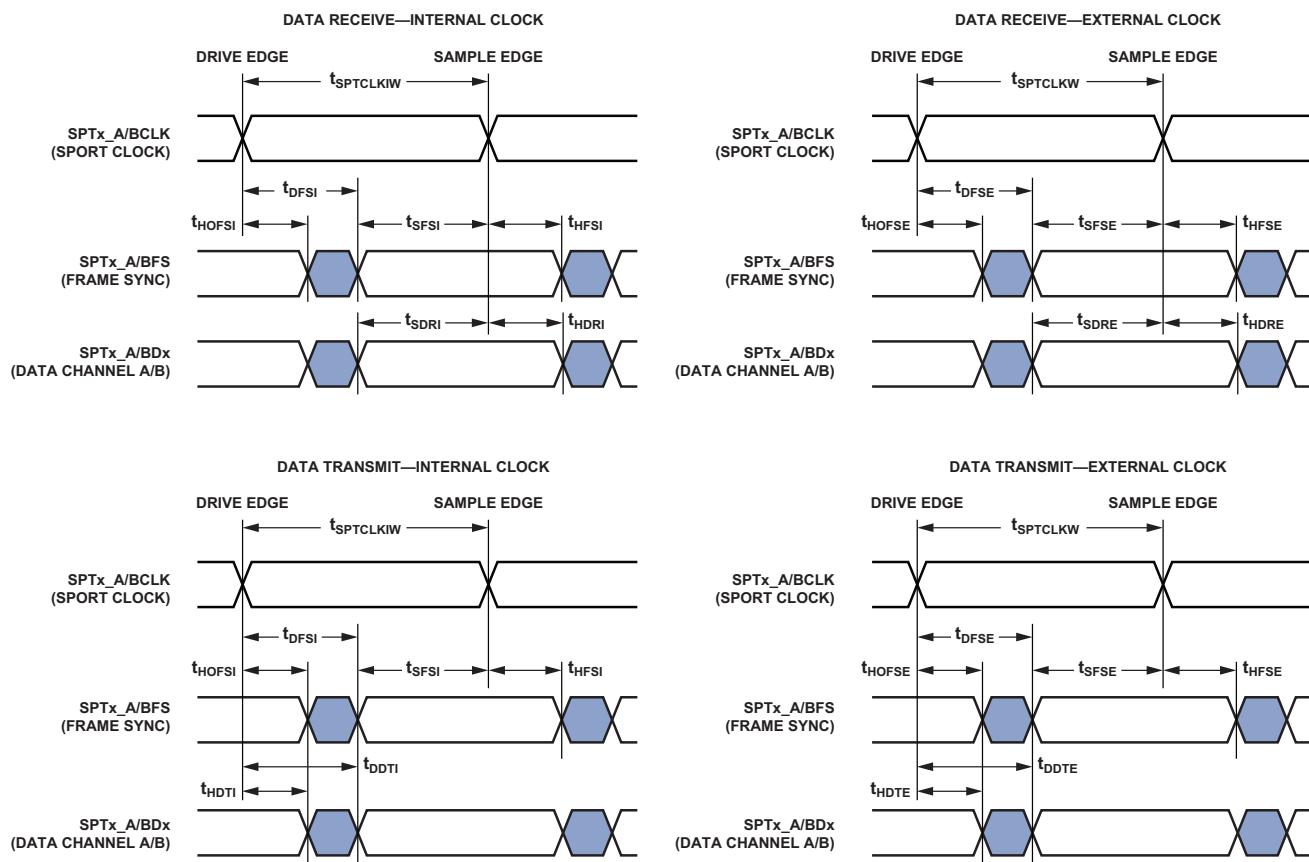


Figure 15. SPORTs

ADSP-SC596/ADSP-SC598

Table 45. SPORTs—Enable and Three-State¹

Parameter		Min	Max	Unit
<i>Switching Characteristics</i>				
tDDTEN	Data Enable From External Transmit SPTx_CLK ²	1		ns
tDDTTE	Data Disable From External Transmit SPTx_CLK ²		14	ns
tDDTIN	Data Enable From Internal Transmit SPTx_CLK ²	-2.5		ns
tDDTTI	Data Disable From Internal Transmit SPTx_CLK ²		2.8	ns

¹ Specifications apply to all four SPORTs.

² Referenced to drive edge.

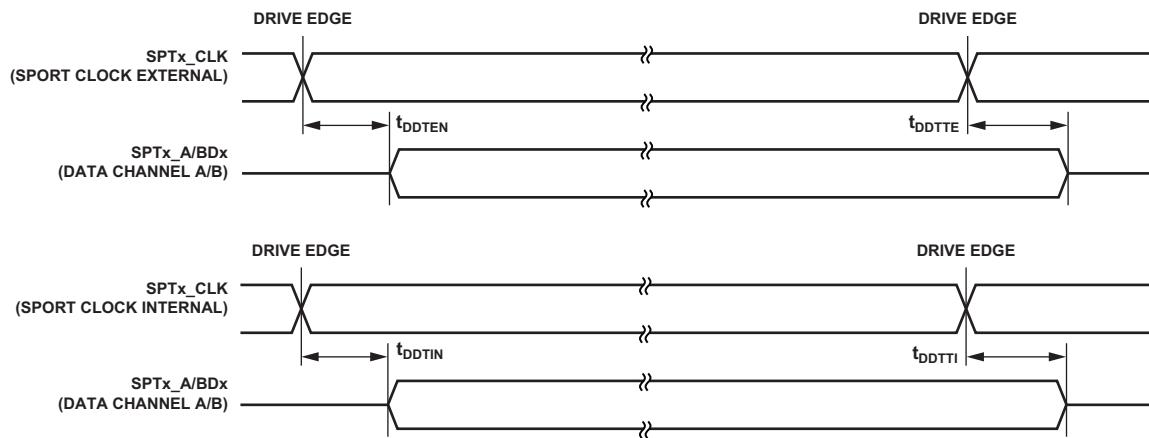


Figure 16. SPORTs—Enable and Three-State

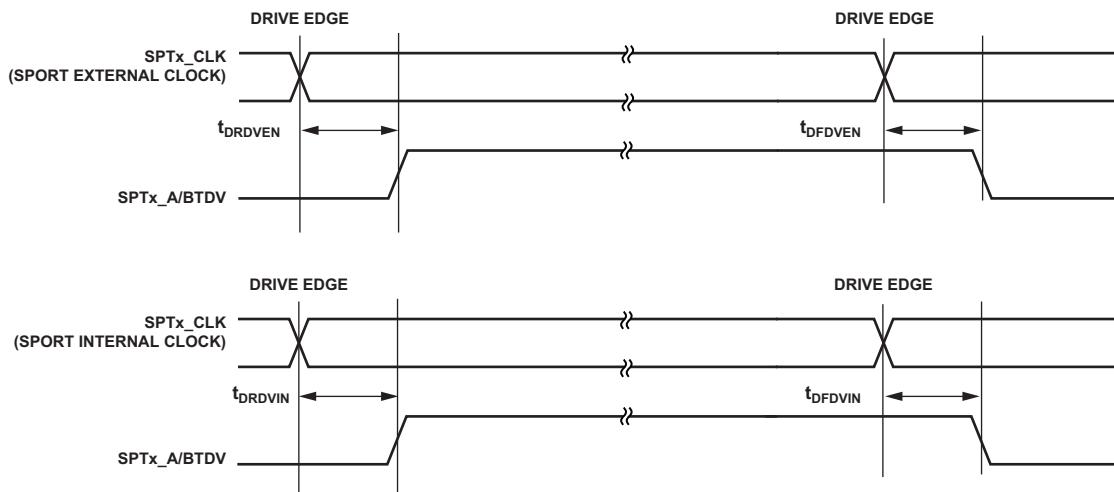

The SPTx_TDVI output signal becomes active in SPORT multichannel mode. During transmit slots (enabled with active channel selection registers) the SPTx_TDVI is asserted for communication with external devices.

Table 46. SPORTs—Transmit Data Valid (TDV)¹

Parameter		Min	Max	Unit
<i>Switching Characteristics</i>				
t_{DRDVEN}	Data Valid Enable Delay From Drive Edge of External Clock ²	2		ns
t_{DFDVEN}	Data Valid Disable Delay From Drive Edge of External Clock ²		14	ns
t_{DRDVIN}	Data Valid Enable Delay From Drive Edge of Internal Clock ²		-2.5	ns
t_{DFDVIN}	Data Valid Disable Delay From Drive Edge of Internal Clock ²		3.5	ns

¹ Specifications apply to all four SPORTs.

² Referenced to drive edge.

Figure 17. SPORTs—Transmit Data Valid Internal and External Clock

ADSP-SC596/ADSP-SC598

Table 47. SPORTs—External Late Frame Sync¹

Parameter		Min	Max	Unit
<i>Switching Characteristics</i>				
tDDTLFSE	Data Delay From Late External Transmit Frame Sync or External Receive Frame Sync With SPORT_MCTL_A/B bits MCE = 1, MFD = 0 ²		14	ns
tDDTENFS	Data Enable for SPORT_MCTL_A/B bits MCE = 1, MFD = 0 ²	0.5		ns

¹ Specifications apply to all four SPORTs.

² The tDDTLFSE and tDDTENFS parameters apply to left justified as well as standard serial mode and MCE = 1, MFD = 0.

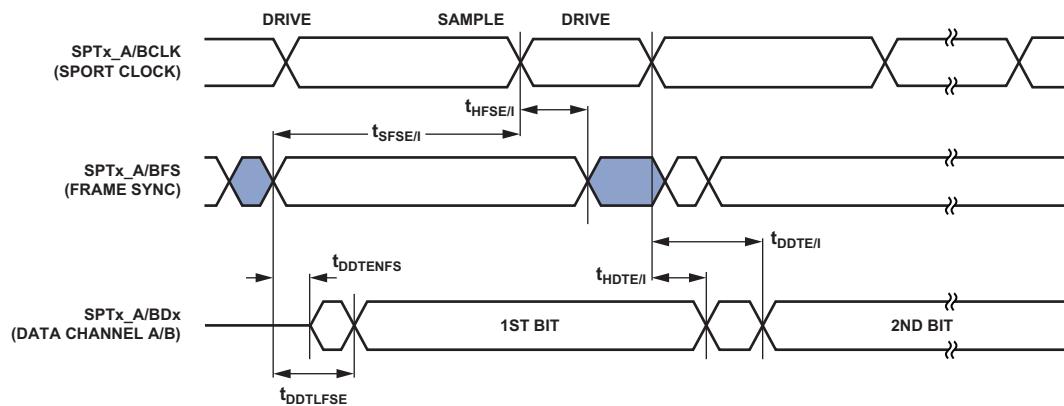
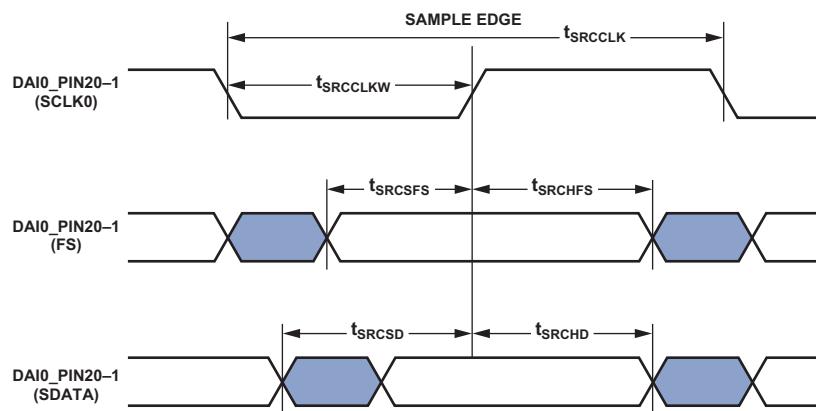


Figure 18. External Late Frame Sync


Asynchronous Sample Rate Converter (ASRC)—Serial Input Port

The ASRC input signals are routed from the DAI0_PINx pins using the SRU. Therefore, the timing specifications provided in [Table 48](#) are valid at the DAI0_PINx pins.

Table 48. ASRC, Serial Input Port

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t_{SRCFS}^1	Frame Sync Setup Before Serial Clock Rising Edge	4		ns
t_{SRCHFS}^1	Frame Sync Hold After Serial Clock Rising Edge	5.5		ns
t_{SRCSD}^1	Data Setup Before Serial Clock Rising Edge	4		ns
t_{SRCHD}^1	Data Hold After Serial Clock Rising Edge	5.5		ns
$t_{SRCCLKW}$	Clock Width	$t_{SCLK0} - 1$		ns
t_{SRCCLK}	Clock Period	$2 \times t_{SCLK0}$		ns

¹ The serial clock, data, and frame sync signals can originate from any of the DAI pins. The serial clock and frame sync signals can also originate via PCG or SPORTs. The input of the PCG can be either CLKIN or any of the DAI pins.

Figure 19. ASRC Serial Input Port Timing

ADSP-SC596/ADSP-SC598

Asynchronous Sample Rate Converter (ASRC)—Serial Output Port

For the serial output port, the frame sync is an input and it must meet setup and hold times with regard to SCLK0 on the output port. The serial data output has a hold time and delay specification with regard to the serial clock. In TDM mode, the ASRC drives at the rising edge and samples at the falling edge of the serial clock. In all other modes, the serial clock rising edge is the sampling edge, and the falling edge is the driving edge.

Table 49. ASRC, Serial Output Port

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t_{SRCFS}^1	Frame Sync Setup Before Serial Clock Rising Edge	4		ns
t_{SRCHFS}^1	Frame Sync Hold After Serial Clock Rising Edge	5.5		ns
$t_{SRCCLKW}$	Clock Width	$t_{SCLK0} - 1$		ns
t_{SRCCLK}	Clock Period	$2 \times t_{SCLK0}$		ns
<i>Switching Characteristics</i>				
t_{SRCTDD}^1	Transmit Data Delay After Serial Clock Falling Edge		13.3	ns
t_{SRCTDH}^1	Transmit Data Hold After Serial Clock Falling Edge	1		ns

¹The serial clock, data, and frame sync signals can originate from any of the DAI pins. The serial clock and frame sync signals can also originate via PCG or SPORTs. The input of the PCG can be either CLKIN, SCLK0, or any of the DAI pins.

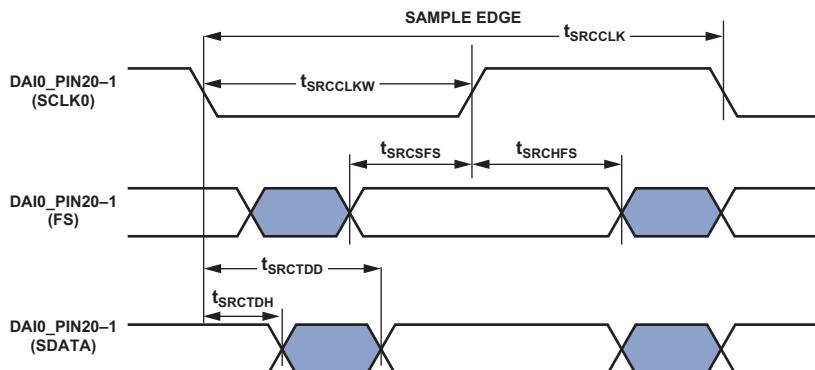


Figure 20. ASRC Serial Output Port Timing

SPI Port—Master Timing**SPI0, SPI1, and SPI2**

Table 50 and Figure 21 describe the SPI port master operations.

When internally generated, the programmed SPI clock ($f_{SPICLKPROG}$) frequency in megahertz is set by the following equation:

$$f_{SPICLKPROG} = \frac{f_{CDU_CLK06}}{(BAUD + 1)}$$

$$t_{SPICLKPROG} = \frac{1}{f_{SPICLKPROG}}$$

where $BAUD$ is a field in the $SPIx_CLK$ register that can be set from 0 to 65,535.

Note that

- In dual-mode data transmit, the $SPIx_MISO$ signal is also an output.
- In quad-mode data transmit, the $SPIx_MISO$, $SPIx_D2$, and $SPIx_D3$ signals are also outputs.
- In dual-mode data receive, the $SPIx_MOSI$ signal is also an input.
- In quad-mode data receive, the $SPIx_MOSI$, $SPIx_D2$, and $SPIx_D3$ signals are also inputs.
- Quad mode is supported by SPI1 and SPI2.
- CPHA is a configuration bit in the SPI_CTL register.

Table 50. SPI Port—Master Timing¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{SSPIDM}	3.5		ns
t_{HSPIDM}	2		ns
<i>Switching Characteristics</i>			
t_{SDSCIM}	$t_{SPICLKPROG} - 5$		ns
	$1.5 \times t_{SPICLKPROG} - 5$		ns
t_{SPICHM}	$0.5 \times t_{SPICLKPROG} - 1.5$		ns
t_{SPICLM}	$0.5 \times t_{SPICLKPROG} - 1.5$		ns
t_{SPICLK}	$t_{SPICLKPROG} - 1.5$		ns
t_{HDSM}	$1.5 \times t_{SPICLKPROG} - 5$		ns
	$t_{SPICLKPROG} - 5$		ns
t_{SPITDM}	$t_{SPICLKPROG} - 1.5$		ns
$t_{DDSPIDM}$		2.7	ns
$t_{HDSPIDM}$	-3.75		ns

¹ All specifications apply to SPI0, SPI1, and SPI2.

² Specification assumes the LEADX and LAGX bits in the SPI_DLV register are 1.

³ See Table 22 for details on the minimum period that can be programmed for $t_{SPICLKPROG}$.

⁴ Applies to sequential mode with $STOP \geq 1$.

ADSP-SC596/ADSP-SC598

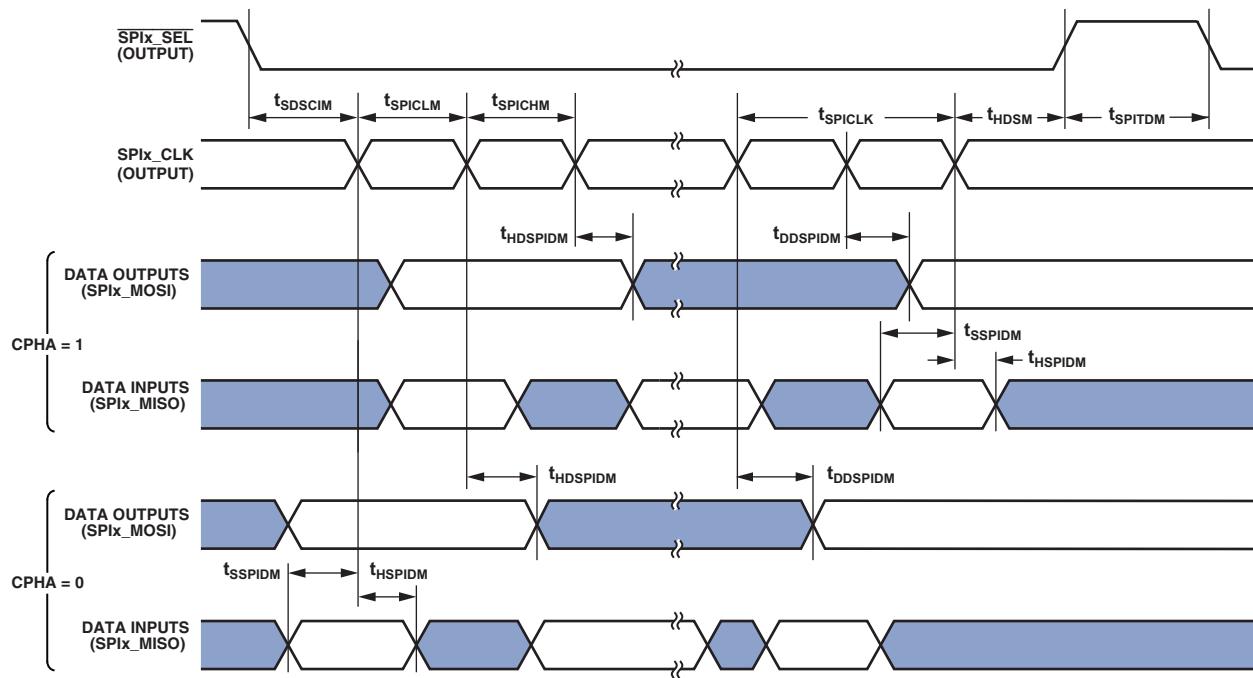


Figure 21. SPI Port—Master Timing

SPI Port—Slave Timing**SPI0, SPI1, and SPI2**

Table 51 and Figure 22 describe SPI port slave operations. Note that

- In dual-mode data transmit, the SPIx_MOSI signal is also an output.
- In quad-mode data transmit, the SPIx_MOSI, SPIx_D2, and SPIx_D3 signals are also outputs.
- In dual-mode data receive, the SPIx_MISO signal is also an input.
- In quad-mode data receive, the SPIx_MISO, SPIx_D2, and SPIx_D3 signals are also inputs.
- In SPI slave mode, the SPI clock is supplied externally and is called $f_{SPICLKEXT}$:

$$t_{SPICLKEXT} = \frac{1}{f_{SPICLKEXT}}$$

- Quad mode is supported by SPI1 and SPI2.
- CPHA is a configuration bit in the SPI_CTL register.

Table 51. SPI Port—Slave Timing¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{SPICH5}	$0.5 \times t_{SPICLKEXT} - 1.5$		ns
t_{SPICL5}	$0.5 \times t_{SPICLKEXT} - 1.5$		ns
t_{SPICLK}	$t_{SPICLKEXT} - 1.5$		ns
t_{HDS}	5		ns
t_{SPITDS}	$t_{SPICLKEXT} - 1.5$		ns
t_{SDSCI}	11.7		ns
t_{SSPID}	2		ns
t_{HSPID}	1.6		ns
<i>Switching Characteristics</i>			
t_{DSOE}	0	14.12	ns
t_{DSDHI}	0	12.6	ns
t_{DDSPID}		14.16	ns
t_{HDSPID}	1.5		ns

¹ All specifications apply to SPI0, SPI1, and SPI2.

² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPIx_CLK. For the external SPIx_CLK ideal maximum frequency, see the $f_{SPICLKEXT}$ specification in Table 22.

ADSP-SC596/ADSP-SC598

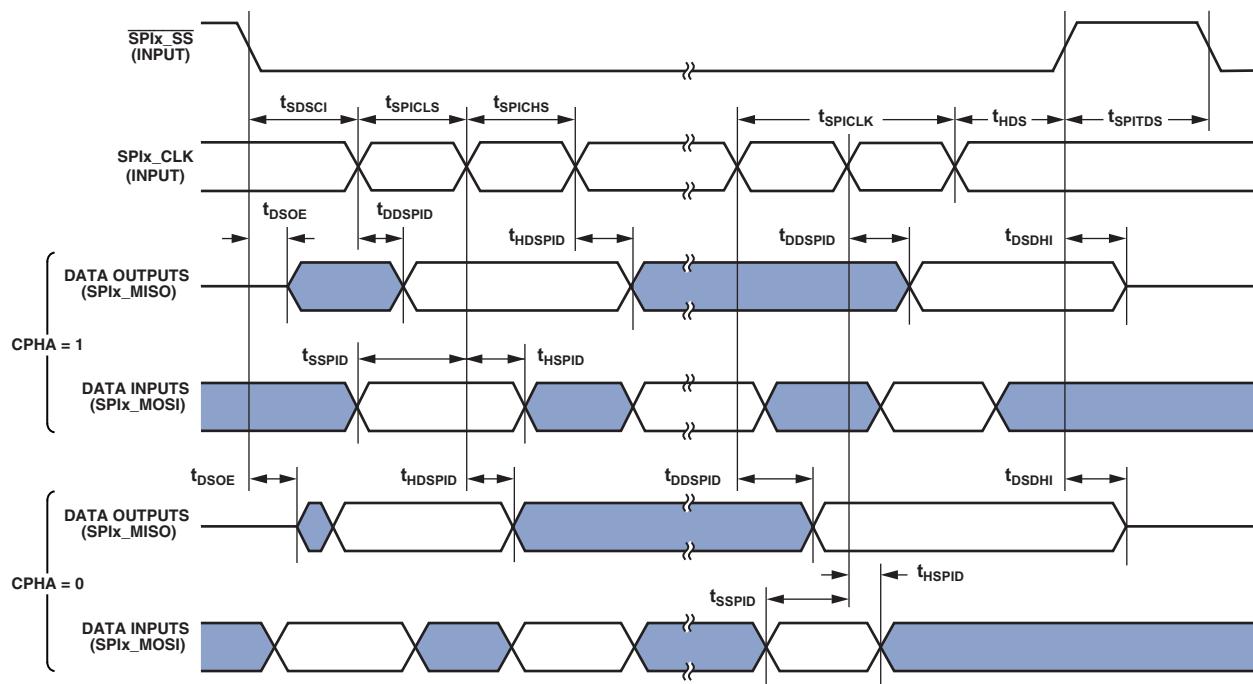
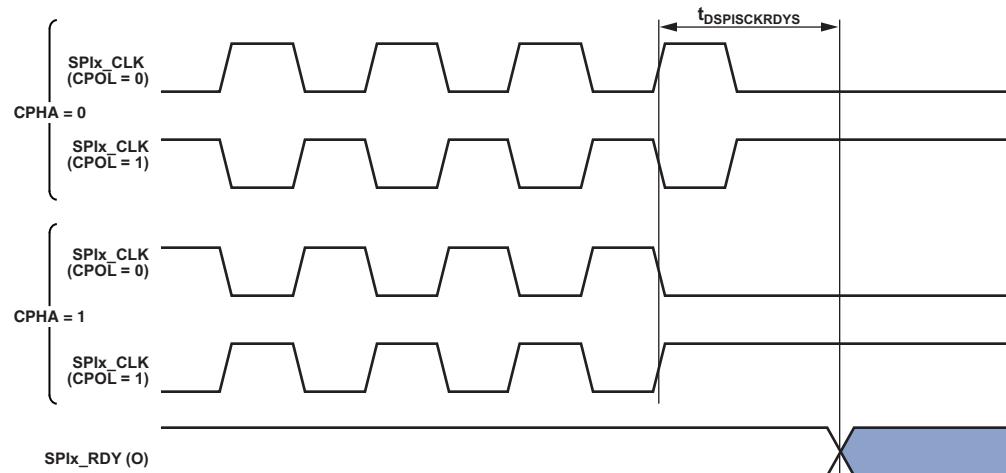


Figure 22. SPI Port—Slave Timing


SPI Port—SPIx_RDY Slave Timing

SPIx_RDY provides flow control. CPOL, CPHA, and FCCH are configuration bits in the SPIx_CTL register.

Table 52. SPI Port—SPIx_RDY Slave Timing¹

Parameter	Conditions	Min	Max	Unit
<i>Switching Characteristic</i>				
$t_{DSPISCKRDYS}$ SPIx_RDY Deassertion From Last Valid Input SPIx_CLK Edge	FCCH = 0 FCCH = 1	$3 \times t_{CDU_CLK06}$ $4 \times t_{CDU_CLK06} + 10$	$4 \times t_{CDU_CLK06} + 10$ $5 \times t_{CDU_CLK06} + 10$	ns ns

¹ All specifications apply to all three SPIs.

Figure 23. SPIx_RDY Deassertion from Valid Input SPIx_CLK Edge in Slave Mode

ADSP-SC596/ADSP-SC598

SPI Port—Open Drain Mode (ODM) Timing

In Figure 24 and Figure 25, the outputs can be SPIx_MOSI, SPIx_MISO, SPIx_D2, and/or SPIx_D3, depending on the mode of operation. CPOL and CPHA are configuration bits in the SPI_CTL register.

Table 53. SPI Port—ODM Master Mode Timing¹

Parameter	Min	Max	Unit
<i>Switching Characteristics</i>			
THDSPIODMM	-1.5		ns
TDSSPIODMM	6		ns

¹ All specifications apply to all three SPIs.

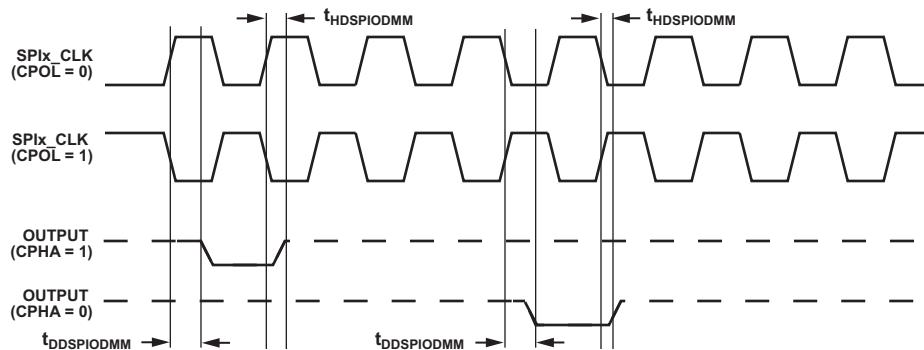


Figure 24. ODM Master Mode

Table 54. SPI Port—ODM Slave Mode¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
THDSPIODMS	0		ns
TDSSPIODMS	11		ns

¹ All specifications apply to all three SPIs.

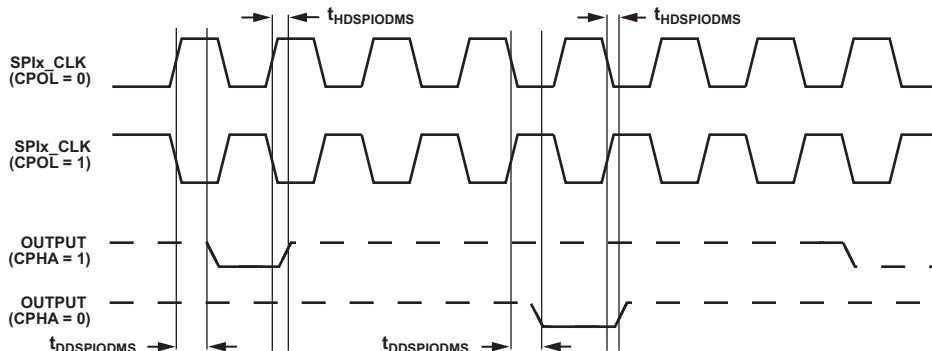
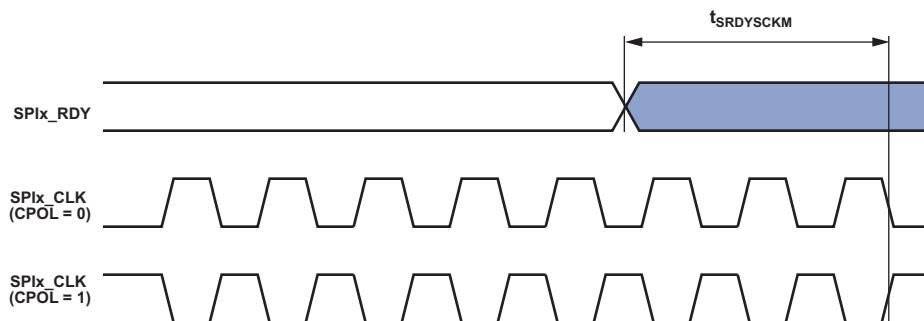


Figure 25. ODM Slave Mode

SPI Port—SPIx_RDY Master Timing

SPIx_RDY is used to provide flow control. CPOL and CPHA are configuration bits in the SPIx_CTL register, whereas LEADX, LAGX, and STOP are configuration bits in the SPIx_DLY register.


Table 55. SPI Port—SPIx_RDY Master Timing¹

Parameter	Conditions	Min	Max	Unit
<i>Timing Requirement</i>				
$t_{SRDYSCKM}$	Setup Time for SPIx_RDY Deassertion Before Last Valid Data SPIx_CLK Edge	$(2 + 2 \times BAUD^2) \times t_{CDU_CLK06} + 11$		ns
<i>Switching Characteristic</i>				
$t_{DRDYSCKM}^3$	Assertion of SPIx_RDY to First SPIx_CLK Edge of Next Transfer	BAUD = 0, CPHA = 0: $4.5 \times t_{CDU_CLK06}$ BAUD = 0, CPHA = 1: $4 \times t_{CDU_CLK06}$ BAUD > 0, CPHA = 0: $(1 + 1.5 \times BAUD^2) \times t_{CDU_CLK06}$ BAUD > 0, CPHA = 1: $(1 + 1 \times BAUD^2) \times t_{CDU_CLK06}$	BAUD = 0, CPHA = 0: $5.5 \times t_{CDU_CLK06} + 12$ BAUD = 0, CPHA = 1: $5 \times t_{CDU_CLK06} + 12$ BAUD > 0, CPHA = 0: $(2 + 2.5 \times BAUD^2) \times t_{CDU_CLK06} + 12$ BAUD > 0, CPHA = 1: $(2 + 2 \times BAUD^2) \times t_{CDU_CLK06} + 12$	ns

¹ All specifications apply to all three SPIs.

² BAUD value is set using the SPIx_CLK.BAUD bits. BAUD value = SPIx_CLK.BAUD bits + 1.

³ Specification assumes the LEADX, LAGX, and STOP bits in the SPI_DLY register are zero.

Figure 26. SPIx_RDY Setup Before SPIx_CLK

ADSP-SC596/ADSP-SC598

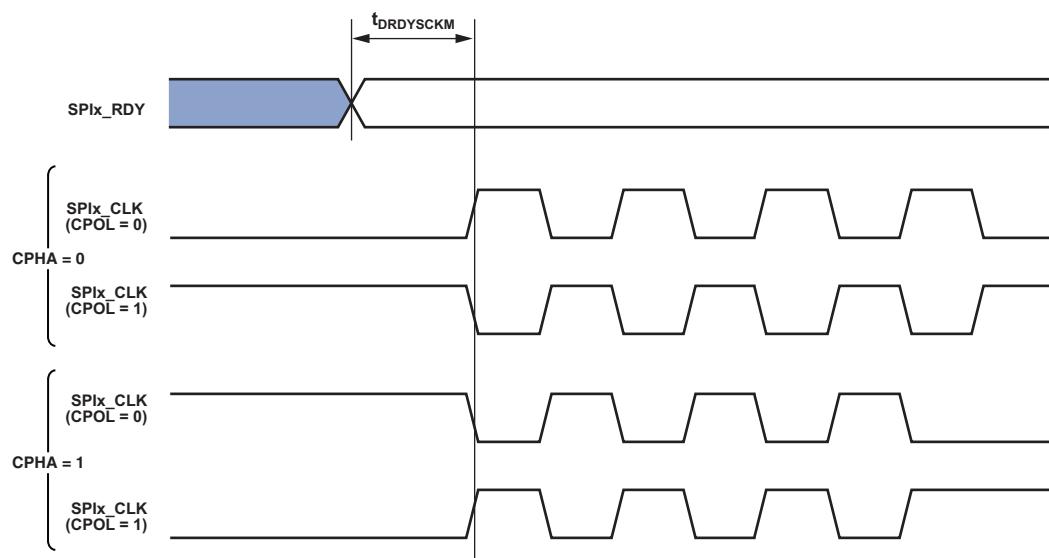


Figure 27. SPIx_CLK Switching Diagram after SPIx_RDY Assertion

OSPI Port—Master Timing**OSPI0**

Table 56 and Figure 28 describe the OSPI port master operations. Slave mode is not supported for OSPI.

When internally generated, the programmed SPI clock ($f_{OSPICLKPROG}$) frequency in megahertz is set by the following equations:

$$f_{SYSCLK} = f_{CDU_CLK010}$$

$$f_{OSPICLKPROG} = \frac{f_{SYSCLK}}{PRG_MBD}$$

$$t_{OSPICLKPROG} = \frac{1}{f_{OSPICLKPROG}}$$

where PRG_MBD is the master mode baud rate divisor.

Note that

- In dual-mode data transmit, the OSPI0_MISO signal is also an output.
- In quad-mode data transmit, the OSPI0_MISO, OSPI0_D2, and OSPI0_D3 signals are also outputs.
- In octal-mode data transmit, the OSPI0_MISO, OSPI0_D2, OSPI0_D3, OSPI0_D4, OSPI0_D5, OSPI0_D6, and OSPI0_D7 signals are also outputs.
- In dual-mode data receive, the OSPI0_MOSI signal is also an input.
- In quad-mode data receive, the OSPI0_MOSI, OSPI0_D2, and OSPI0_D3 signals are also inputs.
- In octal-mode data receive, the OSPI0_MISO, OSPI0_D2, OSPI0_D3, OSPI0_D4, OSPI0_D5, OSPI0_D6, and OSPI0_D7 signals are also outputs.
- CPHA is a configuration bit in the OSPI0_CTL register.

Table 56. OSPI0 Port—Master Timing¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{SSPIDM} Data Input Valid to OSPI0_CLK Sampling Edge (Data Input Setup) ²	$t_{SYSCLK} + 2.6$		ns
t_{HSPIDM} OSPI0_CLK Sampling Edge to Data Input Invalid (Data Input Hold) ²	1		ns
t_{SSPIDM} Data Input Valid to OSPI0_CLK Sampling Edge (Data Input Setup) ^{2,3}	$t_{SYSCLK} + 4.1$		ns
t_{HSPIDM} OSPI0_CLK Sampling Edge to Data Input Invalid (Data Input Hold) ^{2,4}	1.13		ns
<i>Switching Characteristics</i>			
t_{SDSCIM} OSPI0_SEL Low to First OSPI0_CLK Edge ⁵	$0.5 \times t_{OSPICLKPROG} + PRG_CSSOT \times t_{SYSCLK} - 2$		ns
t_{SPICHM} OSPI0_CLK High Period ⁶	$0.45 \times t_{OSPICLKPROG}$		ns
t_{SPICLM} OSPI0_CLK Low Period ⁶	$0.45 \times t_{OSPICLKPROG}$		ns
t_{SPICLK} OSPI0_CLK Period ⁶	$t_{OSPICLKPROG} - 1.5$		ns
t_{HDSM} Last OSPI0_CLK Edge to OSPI0_SEL High for Mode = 0 ⁷	$PRG_CSEOT \times t_{SYSCLK} - 1$		ns
	$PRG_CSEOT \times t_{SYSCLK} + 0.5 \times t_{OSPICLKPROG} - 1$		ns

ADSP-SC596/ADSP-SC598

Table 56. OSPI0 Port—Master Timing¹ (Continued)

Parameter	Min	Max	Unit
tDDSPIDM OSPI0_CLK Edge to Data Out Valid to Driving Edge (Data Out Delay) ⁹		$(\text{PRG_WRHLD} + 1) \times t_{\text{SYSCLK}} + 2.5$	ns
tHDSPIDM OSPI0_CLK Edge to Data Out Invalid to Driving Edge (Data Out Hold) ⁹	$\text{PRG_WRHLD} \times t_{\text{SYSCLK}} - 1$		ns

¹ All specifications apply to OSPI0 only.

² tSSPIDM and tHSPIDM specifications are characterized for OSPI0_RDC settings of 1 for REFCLK DDR and SDR mode and 5 for LB DDR and SDR mode.

³ tSSPIDM specification is characterized for REFCLK DDR mode only.

⁴ tHSPIDM specification is characterized for REFCLK SDR mode only.

⁵ PRG_CSSOT = chip select start of transfer (defined in OSPI0_DLY[7:0]).

⁶ See Table 22 for details on the minimum period that can be programmed for tSPICLKPROG.

⁷ PRG_CSEOT = chip select end of transfer (defined in OSPI0_DLY[15:8]).

⁸ Mode = clock phase and clock polarity bits (defined in OSPI0_CTL[2:1]).

⁹ PRG_WRHLD = transmit delay to improve output hold (defined in OSPI0_RDC[19:16]).

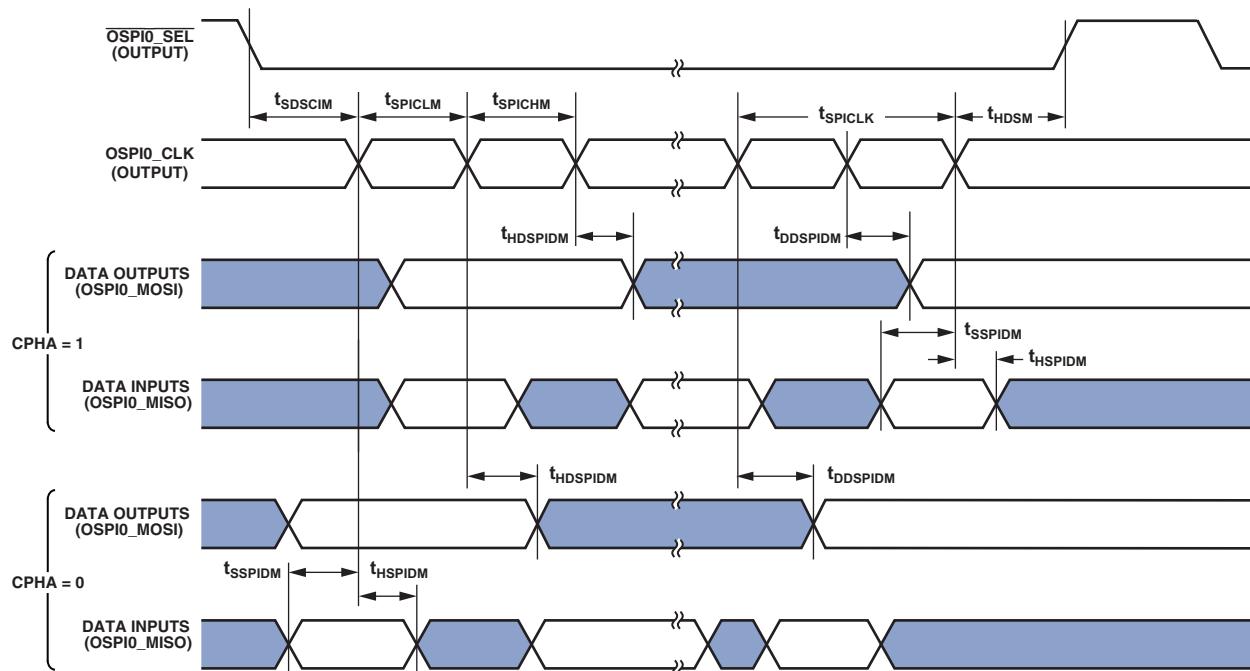


Figure 28. OSPI Port—Master Timing

OSPI0 With Data Training

I/O timing requirements and switching characteristics are not applicable when OSPI is used with data training. See [OSPI PHY Configuration and Training \(EE-437\)](#) for additional information.

When OSPI is used with data training, the programmed OSPI clock (fOSPICLKPROG) frequency in megahertz (MHz) is set by the following equation:

$$f_{\text{OSPICLKPROG}} = f_{\text{CDU_CLK010}}$$

Precision Clock Generator (PCG) (Direct Pin Routing)

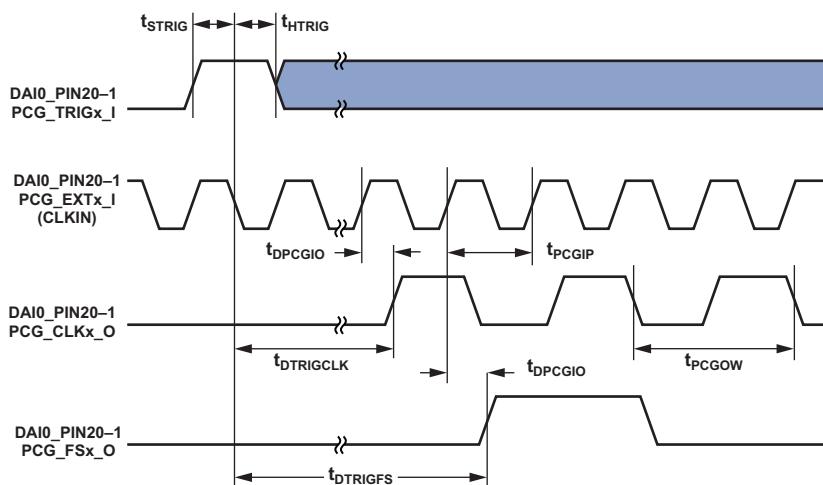

This timing is only valid when the SRU is configured such that the precision clock generator (PCG) takes inputs directly from the DAI pins (via pin buffers) and sends outputs directly to the DAI pins. For the other cases, where the PCG inputs and outputs are not directly routed to/from DAI pins (via pin buffers), there is no timing data available. All timing parameters and switching characteristics apply to external DAI pins (DAI0_PINx).

Table 57. PCG (Direct Pin Routing)

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{PCGIP}	$t_{SCLK0} \times 2$		ns
t_{STRIG}	4.5		ns
t_{HTRIG}	3		ns
<i>Switching Characteristics</i>			
t_{DPCGIO}	2	11	ns
$t_{DTRIGCLK}$	$2 + (2.5 \times t_{PCGIP})$	$13.5 + (2.5 \times t_{PCGIP})$	ns
$t_{DTRIGFS}^1$	$2.5 + ((2.5 + D - PH) \times t_{PCGIP})$	$13.5 + ((2.5 + D - PH) \times t_{PCGIP})$	ns
t_{PCGOW}^2	$2 \times t_{PCGIP} - 1$		ns

¹D = FSxDIV, PH = FSxPHASE. For more information, see the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#).

²Normal mode of operation.

Figure 29. PCG (Direct Pin Routing)

ADSP-SC596/ADSP-SC598

General-Purpose IO Port Timing

Table 58 and Figure 30 describe I/O timing, related to the general-purpose ports (PORT).

Table 58. General-Purpose Port Timing

Parameter	Min	Max	Unit
<i>Timing Requirement</i>			
t_{WFI} General-Purpose Port Pin Input Pulse Width	$2 \times t_{SCLK0} - 1.5$		ns

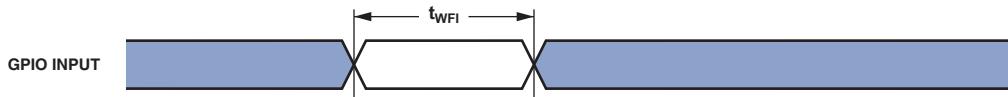


Figure 30. General-Purpose Port Timing

General-Purpose I/O Timer Cycle Timing

Table 59, Table 60, and Figure 31 describe timer expired operations related to the general-purpose timer (TIMER0). The width value is the timer period assigned in the TMx_TMRn_WIDTH register and can range from 1 to $2^{32} - 1$. When externally generated, the TMx_CLK clock is called $f_{TMRCLKEXT}$:

$$t_{TMRCLKEXT} = \frac{1}{f_{TMRCLKEXT}}$$

Table 59. Timer Cycle Timing—Internal Mode

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{WL} Timer Pulse Width Input Low (Measured In SCLK0 Cycles) ¹	$2 \times t_{SCLK0}$		ns
t_{WH} Timer Pulse Width Input High (Measured In SCLK0 Cycles) ¹	$2 \times t_{SCLK0}$		ns
<i>Switching Characteristic</i>			
t_{HTO} Timer Pulse Width Output (Measured In SCLK0 Cycles) ²	$t_{SCLK0} \times \text{WIDTH} - 1.7$	$t_{SCLK0} \times \text{WIDTH} + 1.5$	ns

¹The minimum pulse width applies for timer signals in width capture and external clock modes.

²WIDTH refers to the value in the TMRx_WIDTH register (it can vary from 2 to $2^{32} - 1$).

Table 60. Timer Cycle Timing—External Mode

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{WL} Timer Pulse Width Input Low (Measured In EXT_CLK Cycles) ¹	$2 \times t_{EXT_CLK}$		ns
t_{WH} Timer Pulse Width Input High (Measured In EXT_CLK Cycles) ¹	$2 \times t_{EXT_CLK}$		ns
t_{EXT_CLK} Timer External Clock Period ²	$t_{TMRCLKEXT}$		ns
<i>Switching Characteristic</i>			
t_{HTO} Timer Pulse Width Output (Measured In EXT_CLK Cycles) ³	$t_{EXT_CLK} \times \text{WIDTH} - 1.5$	$t_{EXT_CLK} \times \text{WIDTH} + 1.5$	ns

¹The minimum pulse width applies for timer signals in width capture and external clock modes.

²This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external TMR_CLK. For the external TMR_CLK maximum frequency, see the $f_{TMRCLKEXT}$ specification in Table 22.

³WIDTH refers to the value in the TMRx_WIDTH register (it can vary from 1 to $2^{32} - 1$).

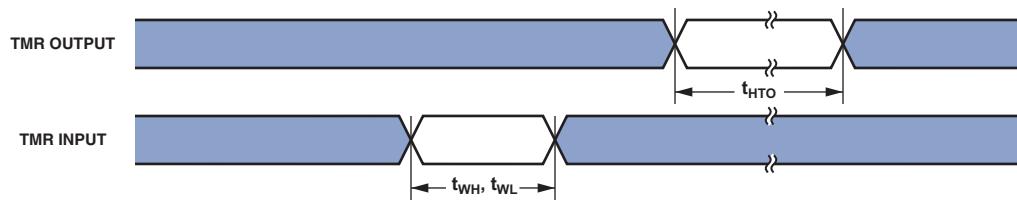


Figure 31. Timer Cycle Timing

DAIx Pin to DAIx Pin Direct Routing (DAI0 Block and DAI1 Block)

Table 61 and Figure 32 describe I/O timing related to the digital audio interface (DAI) for direct pin connections only (for example, DAIx_PB01_I to DAIx_PB02_O).

Table 61. DAI Pin to DAI Pin Routing

Parameter	Min	Max	Unit
Switching Characteristic t _{DPIO} Delay DAI Pin Input Valid to DAI Output Valid	1	12	ns

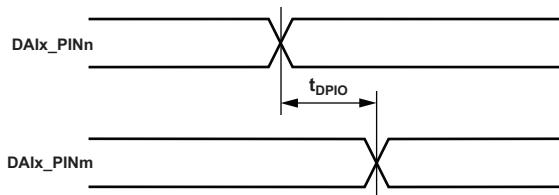


Figure 32. DAI Pin to DAI Pin Direct Routing

Up/Down Counter/Rotary Encoder Timing

Table 62 and Figure 33 describe timing related to the general-purpose counter (CNT).

Table 62. Up/Down Counter/Rotary Encoder Timing

Parameter	Min	Max	Unit
Timing Requirement t _{WCOUNT} Up/Down Counter/Rotary Encoder Input Pulse Width	2 × t _{SCLK0}		ns

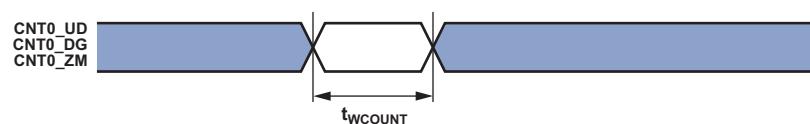


Figure 33. Up/Down Counter/Rotary Encoder Timing

ADSP-SC596/ADSP-SC598

Universal Serial Bus (USB) Timing

Table 63 provides the timing for the input and output direction for USB SDR mode.

Table 63. USB Timing SDR Mode

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t _{SD}	Input Data Setup Time	7		ns
t _{HD}	Input Data Hold Time	1.5		ns
t _{SC}	Input Control Setup Time	8		ns
t _{HC}	Input Control Hold Time	1.5		ns
<i>Switching Characteristics</i>				
t _{DD}	Output Data Delay	0	9	ns
t _{DC}	Output Control Delay	0	9	ns

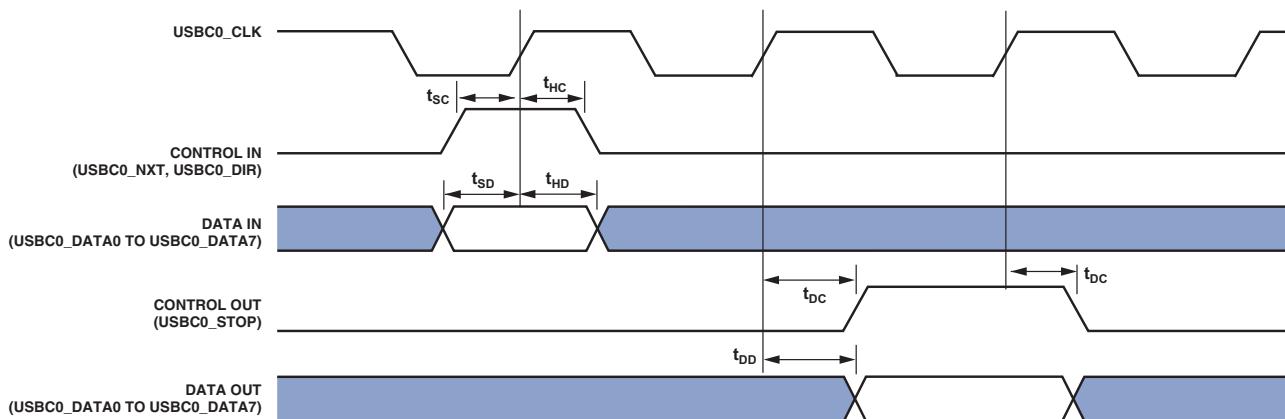


Figure 34. USB Timing

Universal Asynchronous Receiver-Transmitter (UART) Ports—Receive and Transmit Timing

The UART ports receive and transmit operations are described in the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#).

Controller Area Network FD (CANFD) Interface

The CANFD interface timing is described in the [ADSP-SC596/ADSP-SC598 SHARC+ Processor Hardware Reference](#).

10/100 EMAC Timing (ETH0 Only)

Table 64, Table 65, Figure 35, and Figure 36 describe the MII EMAC operations.

Table 64. 10/100 EMAC Timing: MII Receive Signal

Parameter ¹		V _{DDEXT} 3.3 V Nominal		Unit
		Min	Max	
<i>Timing Requirements</i>				
t _{ERXCLKF}	ETH0_RXCLK_REFCLK Frequency (f _{SCLK} = SCLK Frequency)	None	25 + 1%	MHz
t _{ERXCLKW}	ETH0_RXCLK_REFCLK Width (t _{ERxCLK} = ETH0_RXCLK_REFCLK Period)	t _{ERxCLK} × 35%	t _{ERxCLK} × 65%	ns
t _{ERXCLKIS}	Rx Input Valid to ETH0_RXCLK_REFCLK Rising Edge (Data In Setup)	2		ns
t _{ERXCLKIH}	ETH0_RXCLK_REFCLK Rising Edge to Rx Input Invalid (Data In Hold)	2.2		ns

¹ MII inputs synchronous to ETH0_RXCLK_REFCLK are ETH0_RXD3-0, ETH0_RXCTL_RXDV, and ETH0_RXERR.

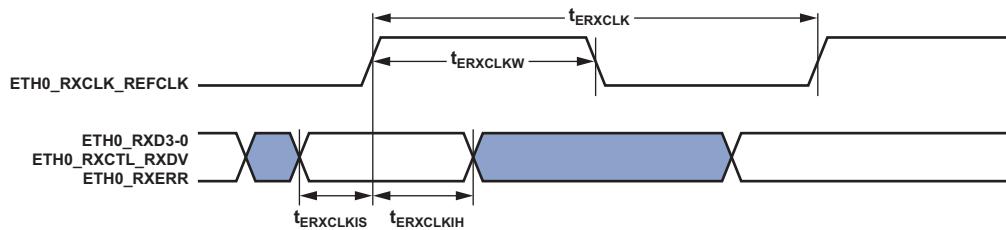


Figure 35. 10/100 EMAC Timing: MII Receive Signal

Table 65. 10/100 EMAC Timing: MII Transmit Signal

Parameter ¹		V _{DDEXT} 3.3 V Nominal		Unit
		Min	Max	
<i>Timing Requirements</i>				
t _{ETXCLKF}	ETH0_TXCLK Frequency (f _{SCLK} = SCLK Frequency)	None	25 + 1%	MHz
t _{ETXCLKW}	ETH0_TXCLK Width (t _{ETxCLK} = ETH0_TXCLK Period)	t _{ETxCLK} × 35%	t _{ETxCLK} × 65%	ns
<i>Switching Characteristics</i>				
t _{ETXCLKOV}	ETH0_TXCLK Rising Edge to Tx Output Valid (Data Out Valid)		11.4	ns
t _{ETXCLKOH}	ETH0_TXCLK Rising Edge to Tx Output Invalid (Data Out Hold)	2		ns

¹ MII outputs synchronous to ETH0_TXCLK are ETH0_RXD3-0.

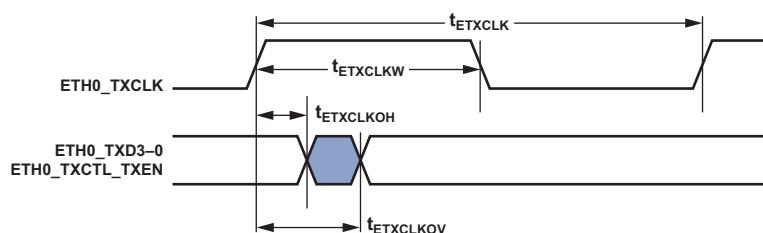


Figure 36. 10/100 EMAC Timing: MII Transmit Signal

ADSP-SC596/ADSP-SC598

10/100 EMAC Timing (ETH0 and ETH1)

Table 66 through Table 68 and Figure 37 through Figure 39 describe the RMII EMAC operations.

Table 66. 10/100 EMAC Timing—RMII Receive Signal¹

Parameter ²	Min	Max	Unit
<i>Timing Requirements</i>			
tREFCLKF		50 + 1%	MHz
tREFCLKW	$t_{REFCLKF} \times 35\%$	$t_{REFCLKF} \times 65\%$	ns
tREFCLKIS	1.75		ns
tREFCLKIH	1.6		ns

¹These specifications apply to ETH0 and ETH1.

²RMII inputs synchronous to RMII ETHx_REFCLK are ETHx_RXD1–0, RMII ETHx_CRS, and ERxER.

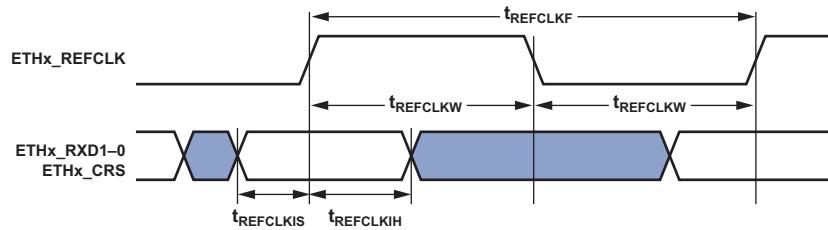


Figure 37. 10/100 EMAC Controller Timing—RMII Receive Signal

Table 67. 10/100 EMAC Timing—RMII Transmit Signal¹

Parameter ²	Min	Max	Unit
<i>Switching Characteristics</i>			
tREFCLKOV		11.9	ns
tREFCLKOH	2		ns

¹These specifications apply to ETH0 and ETH1.

²RMII outputs synchronous to RMII ETHx_REFCLK are ETHx_RXD1 and TXD0.

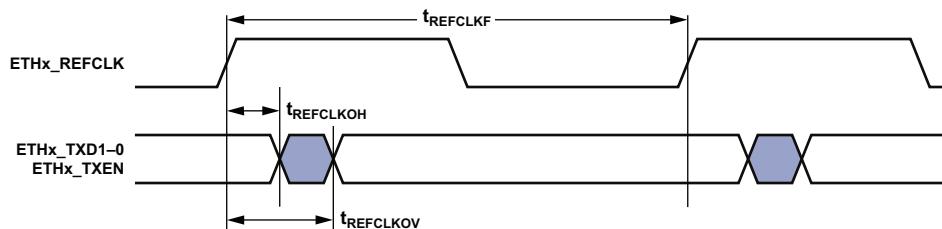


Figure 38. 10/100 EMAC Controller Timing—RMII Transmit Signal

Table 68. EMAC Timing— Station Management¹

Parameter ²		Min	Max	Unit
<i>Timing Requirements</i>				
t_{MDIOS}	ETHx_MDIO Input Valid to ETHx_MDC Rising Edge (Setup)	12.6		ns
t_{MDCIH}	ETHx_MDC Rising Edge to ETHx_MDIO Input Invalid (Hold)	0		ns
<i>Switching Characteristics</i>				
t_{MDCOV}	ETHx_MDC Falling Edge to ETHx_MDIO Output Valid		2	ns
t_{MDCOH}	ETHx_MDC Falling Edge to ETHx_MDIO Output Invalid (Hold)	-4.9		ns

¹These specifications apply to ETH0 and ETH1.

²ETHx_MDC/ETHx_MDIO is a 2-wire serial bidirectional port for controlling one or more external PHYs. ETHx_MDC is an output clock with a minimum period that is programmable as a multiple of the system clock SCLK0. ETHx_MDIO is a bidirectional data line.

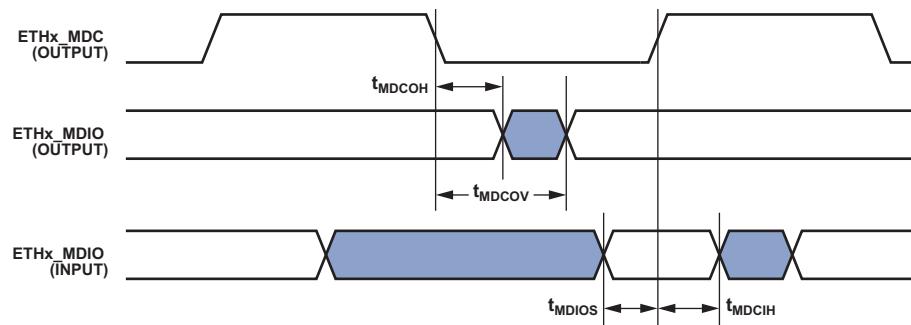


Figure 39. Ethernet MAC Controller Timing— Station Management

ADSP-SC596/ADSP-SC598

10/100/1000 EMAC Timing (ETH0 Only)

Table 69 and Figure 40 describe the RGMII EMAC timing.

Table 69. 10/100/1000 EMAC Timing—RGMII Receive and Transmit Signals¹

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
tSETUPR	Data to Clock Input Setup at Receiver	1		ns
tHOLDR	Data to Clock Input Hold at Receiver	1		ns
tGREFCLKF	RGMII Receive Clock Period	8		ns
tGREFCLKW	RGMII Receive Clock Pulse Width	4		ns
<i>Switching Characteristics</i>				
tSKEWT	Data to Clock Output Skew at Transmitter	-0.5	+0.5	ns
tCYC	Clock Cycle Duration	7.2	8.8	ns
tDUTY_G	Duty Cycle for RGMII Minimum	$t_{GREFCLKF} \times 45\%$	$t_{GREFCLKF} \times 55\%$	ns

¹This specification is supported by ETH0 only (10/100/1000 EMAC controller).

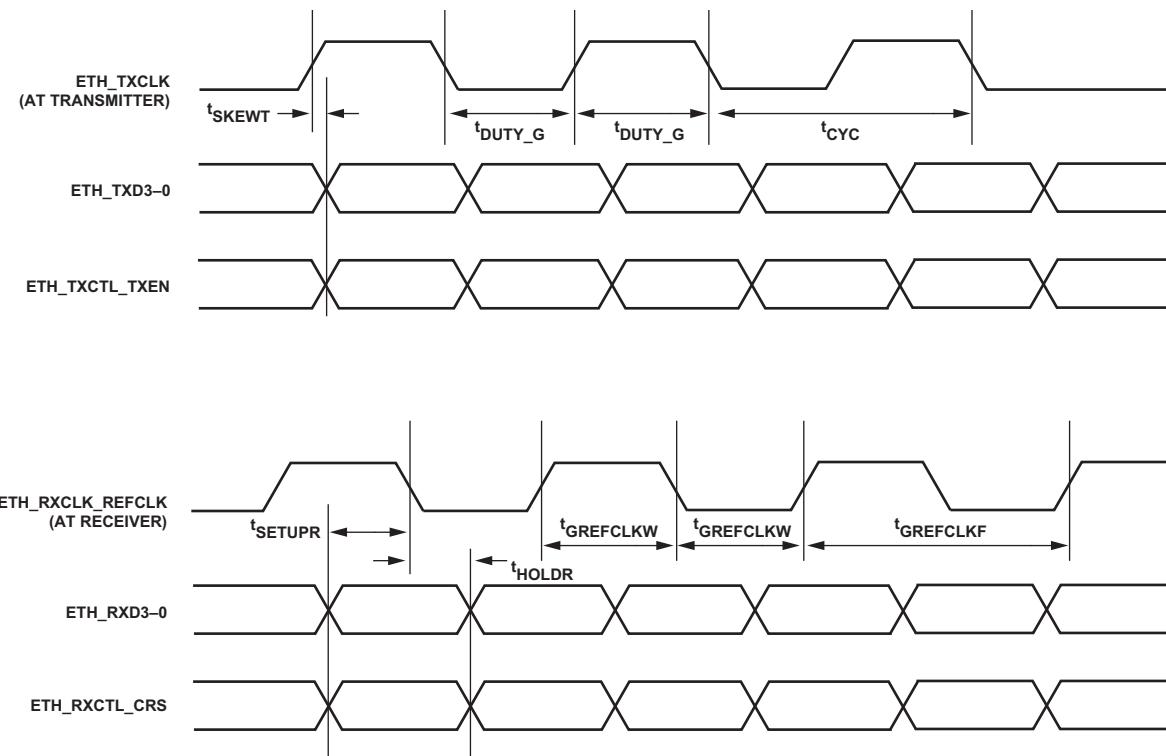


Figure 40. Gigabit EMAC Controller Timing—RGMII

Enhanced Parallel Peripheral Interface (EPPI) Timing

Table 70 and Table 71 and Figure 41 through Figure 49 describe enhanced parallel peripheral interface (EPPI) timing operations. In Figure 41 through Figure 49, POLC[1:0] represents the setting of the EPPI_CTL register, which sets the sampling/driving edges of the EPPI clock.

When internally generated, the programmed PPI clock ($f_{PCLKPROG}$) frequency in megahertz is set by the following equation where VALUE is a field in the EPPI_CLKDIV register that can be set from 0 to 65535:

$$f_{PCLKPROG} = \frac{f_{SCLK0}}{(VALUE + 1)}$$

$$t_{PCLKPROG} = \frac{1}{f_{PCLKPROG}}$$

When externally generated, the EPPI_CLK is called $f_{PCLKEXT}$:

$$t_{PCLKEXT} = \frac{1}{f_{PCLKEXT}}$$

Table 70. Enhanced Parallel Peripheral Interface (EPPI)—Internal Clock

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
t_{SFSP}	External FS Setup Before EPPI_CLK	6.5	ns
t_{HFSP}	External FS Hold After EPPI_CLK	0	ns
t_{SDRPI}	Receive Data Setup Before EPPI_CLK	6.5	ns
t_{HDRPI}	Receive Data Hold After EPPI_CLK	0	ns
t_{SFS3GI}	External FS3 Input Setup Before EPPI_CLK Fall Edge in Clock Gating Mode	14	ns
t_{HFS3GI}	External FS3 Input Hold Before EPPI_CLK Fall Edge in Clock Gating Mode	0	ns
<i>Switching Characteristics</i>			
t_{PCLKW}	EPPI_CLK Width ¹	$0.5 \times t_{PCLKPROG} - 1.5$	ns
t_{PCLK}	EPPI_CLK Period ¹	$t_{PCLKPROG} - 1.5$	ns
t_{DFSPI}	Internal FS Delay After EPPI_CLK	3.5	ns
t_{HOFSP}	Internal FS Hold After EPPI_CLK	-1	ns
t_{DDTP}	Transmit Data Delay After EPPI_CLK	3.5	ns
t_{HDTP}	Transmit Data Hold After EPPI_CLK	-1	ns

¹ See Table 22 for details on the minimum period that can be programmed for $t_{PCLKPROG}$.

ADSP-SC596/ADSP-SC598

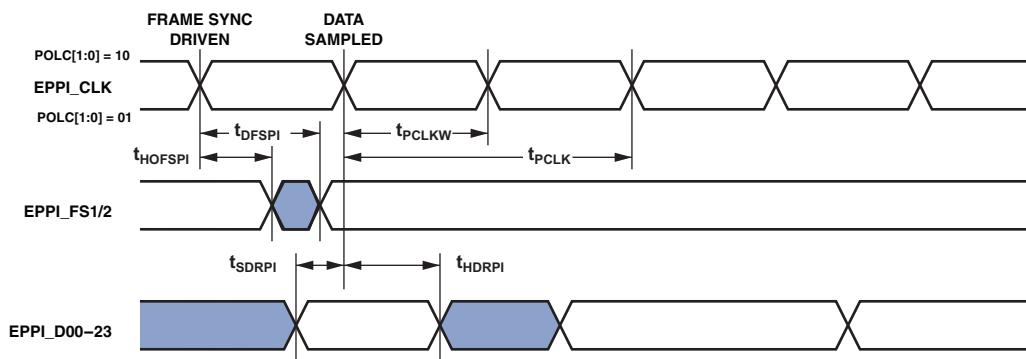


Figure 41. EPPI Internal Clock GP Receive Mode with Internal Frame Sync Timing

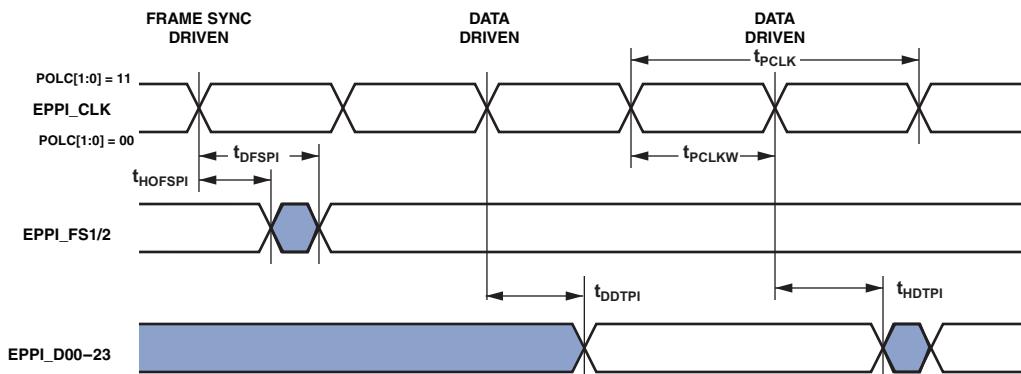


Figure 42. EPPI Internal Clock GP Transmit Mode with Internal Frame Sync Timing

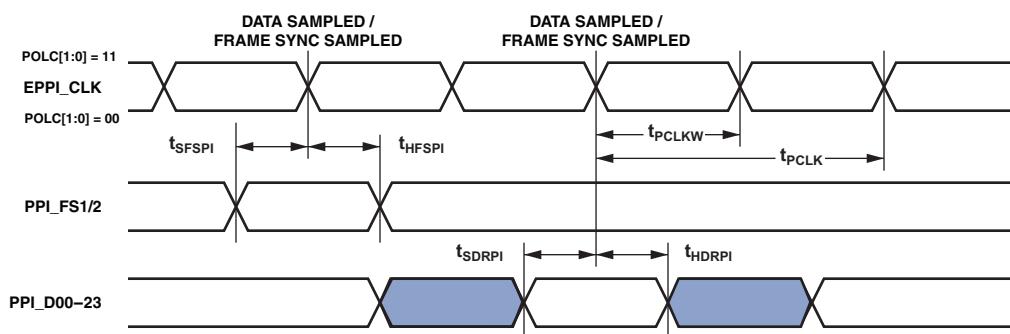


Figure 43. EPPI Internal Clock GP Receive Mode with External Frame Sync Timing

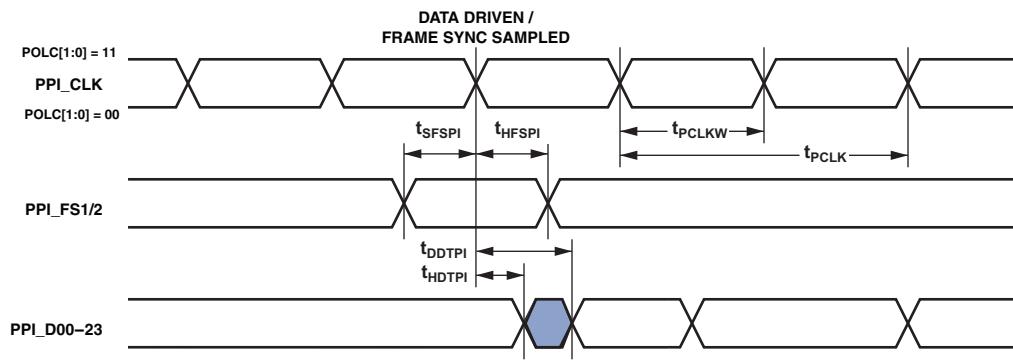


Figure 44. EPPI Internal Clock GP Transmit Mode with External Frame Sync Timing

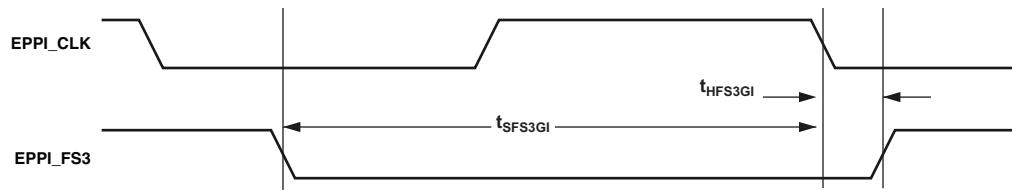


Figure 45. Clock Gating Mode with Internal Clock and External Frame Sync Timing

ADSP-SC596/ADSP-SC598

Table 71. Enhanced Parallel Peripheral Interface (EPPI)—External Clock

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t_{PCLKW}	EPPI_CLK Width ¹		$0.5 \times t_{PCLKEXT} - 0.5$	ns
t_{PCLK}	EPPI_CLK Period ¹		$t_{PCLKEXT} - 1$	ns
t_{SFSP}	External FS Setup Before EPPI_CLK		2	ns
t_{HFSP}	External FS Hold After EPPI_CLK		3.7	ns
t_{SDRPE}	Receive Data Setup Before EPPI_CLK		2	ns
t_{HDRPE}	Receive Data Hold After EPPI_CLK		3.7	ns
<i>Switching Characteristics</i>				
t_{DFSPE}	Internal FS Delay After EPPI_CLK			15.3
t_{HOFSP}	Internal FS Hold After EPPI_CLK	2.4		ns
t_{DDTPE}	Transmit Data Delay After EPPI_CLK			15.3
t_{HDTPE}	Transmit Data Hold After EPPI_CLK	2.4		ns

¹This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external EPPI_CLK. For the external EPPI_CLK ideal maximum frequency, see the $f_{PCLKEXT}$ specification in [Table 22](#).

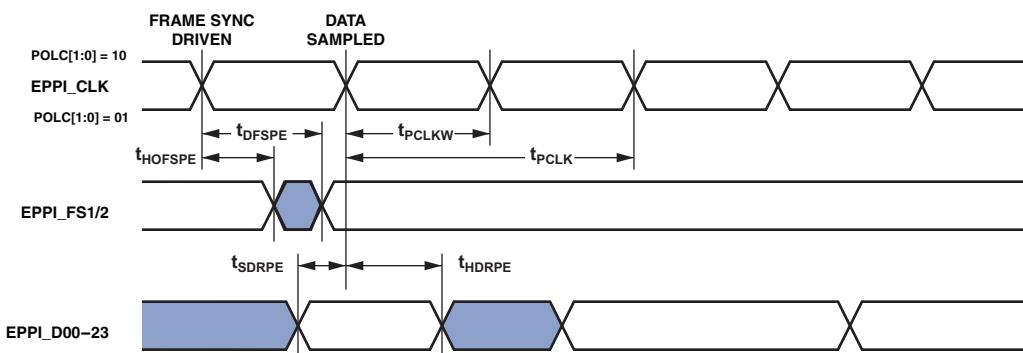


Figure 46. EPPI External Clock GP Receive Mode with Internal Frame Sync Timing



Figure 47. EPPI External Clock GP Transmit Mode with Internal Frame Sync Timing

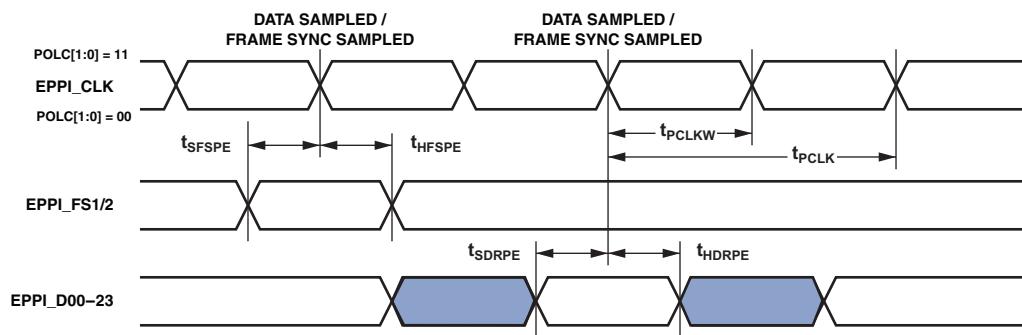


Figure 48. EPPI External Clock GP Receive Mode with External Frame Sync Timing

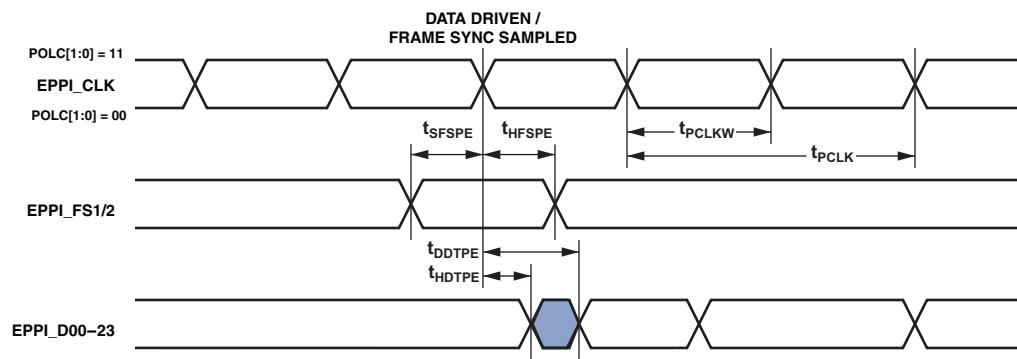


Figure 49. EPPI External Clock GP Transmit Mode with External Frame Sync Timing

ADSP-SC596/ADSP-SC598

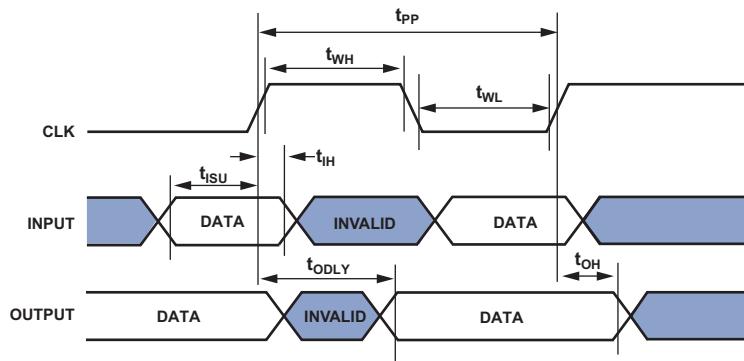
Extended Mobile Storage Interface (eMSI) Controller Timing—eMMC SDR Mode

Table 72 and Figure 50 show I/O timing related to the eMSI.

Table 72. eMSI Controller Timing—eMMC SDR Mode

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t _{ISU}	Input Data Setup Time	5.8		ns
t _{IH}	Input Data Hold Time	2.5		ns
t _{ISU}	Input Command Setup Time	5.8		ns
t _{IH}	Input Command Hold Time	2.5		ns
<i>Switching Characteristics</i>				
t _{WL}	CLK Low Time	0.45 × t _p	0.55 × t _p	ns
t _{WH}	CLK High Time	0.45 × t _p	0.55 × t _p	ns
f _p	Clock Frequency Data Transfer Mode ¹		50	MHz
t _{PP}	Period	t _p – 0.8		ns
t _{ODLY}	Output Data Delay		16.5	ns
t _{OH}	Output Data Delay	3.5		ns
t _{ODLY}	Output Command Delay		16.5	ns
t _{OH}	Output Command Delay	3.5		ns

¹t_p = 1/f_p



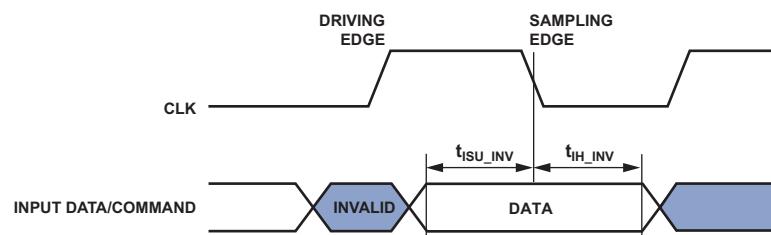

Figure 50. eMSI Controller Timing with eMMC SDR Mode

Table 73 and Figure 51 show I/O timing related to the eMSI with eMMC SDR mode (clock tuning logic enabled).

Table 73. eMSI Controller Timing—eMMC SDR Mode (Clock Tuning Logic Enabled)¹

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t_{ISU_INV}	Input Data Setup Time	3.3		ns
t_{IH_INV}	Input Data Hold Time	3.3		ns
t_{ISU_INV}	Input Command Setup Time	3.3		ns
t_{IH_INV}	Input Command Hold Time	3.3		ns

¹Refer to Table 72 for Switching Characteristics.

Figure 51. eMSI Controller Timing with eMMC SDR Mode (Clock Tuning Logic Enabled)

ADSP-SC596/ADSP-SC598

Extended Mobile Storage Interface (eMSI) Controller Timing—eMMC DDR Mode

Table 74 and Figure 52 show I/O timing related to the eMSI with eMMC DDR mode.

Table 74. eMSI Controller Timing—eMMC DDR Mode¹

Parameter	Min	Max	Unit
<i>Timing Requirements</i>			
tISUDDR Input Data Setup Time	2.5		ns
tIHDDR Input Data Hold Time	2		ns
<i>Switching Characteristic</i>			
tODLYDDR Output Data Delay	2.6	7	ns

¹ Refer to Table 72 for t_{PP} and parameters for command.

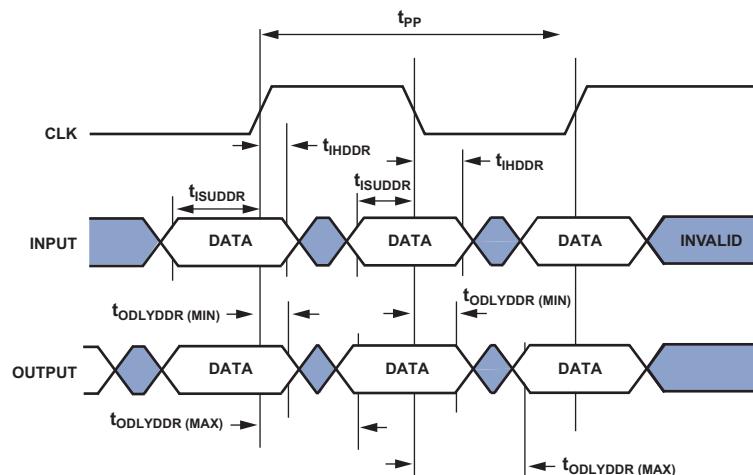


Figure 52. eMSI Controller Timing with eMMC DDR Mode

Extended Mobile Storage Interface (eMSI) Controller Timing—SD Card Mode

Table 75 and Figure 53 show I/O timing related to the SD card DS mode.

Table 75. eMSI Controller Timing—SD Card DS Mode

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t_{ISU}	Input Data Setup Time	5.8		ns
t_{IH}	Input Data Hold Time	2.5		ns
t_{ISU}	Input Command Setup Time	5.8		ns
t_{IH}	Input Command Hold Time	2.5		ns
<i>Switching Characteristics</i>				
t_{WL}	CLK Low Time	$0.45 \times t_p$	$0.55 \times t_p$	ns
t_{WH}	CLK High Time	$0.45 \times t_p$	$0.55 \times t_p$	ns
f_p	Clock Frequency Data Transfer Mode ¹		25	MHz
t_{PP}	Period	$t_p - 1.5$		ns
t_{ODLY}	Output Data Delay		26	ns
t_{OH}	Output Data Delay	22		ns
t_{ODLY}	Output Command Delay		26	ns
t_{OH}	Output Command Delay	22		ns

¹ $t_p = 1/f_p$

Table 76 and Figure 53 show I/O timing related to the SD card HS mode.

Table 76. eMSI Controller Timing—SD Card HS Mode

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t_{ISU}	Input Data Setup Time	5.8		ns
t_{IH}	Input Data Hold Time	2.5		ns
t_{ISU}	Input Command Setup Time	5.8		ns
t_{IH}	Input Command Hold Time	2.5		ns
<i>Switching Characteristics</i>				
t_{WL}	CLK Low Time	$0.45 \times t_p$	$0.55 \times t_p$	ns
t_{WH}	CLK High Time	$0.45 \times t_p$	$0.55 \times t_p$	ns
f_p	Clock Frequency Data Transfer Mode ¹		46	MHz
t_{PP}	Period	$t_p - 0.8$		ns
t_{ODLY}	Output Data Delay		15.7	ns
t_{OH}	Output Data Delay	12		ns
t_{ODLY}	Output Command Delay		15.7	ns
t_{OH}	Output Command Delay	12		ns

¹ $t_p = 1/f_p$

ADSP-SC596/ADSP-SC598

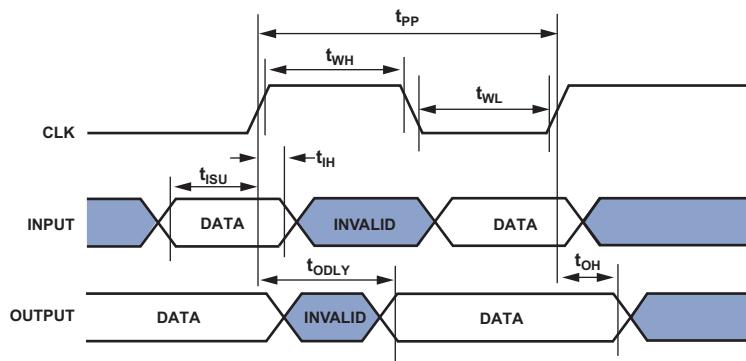
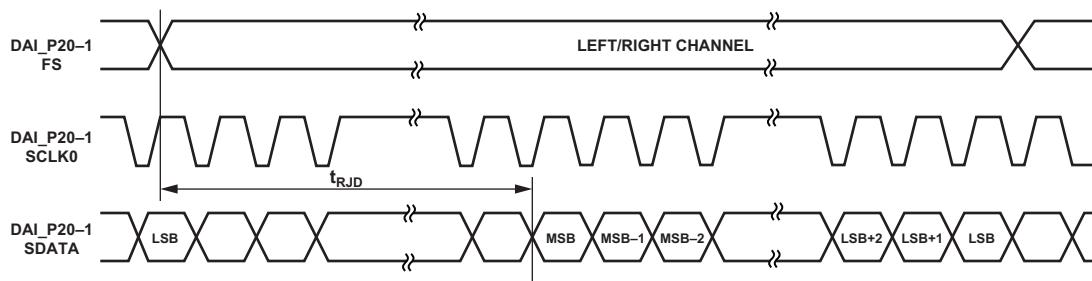


Figure 53. SD Card Controller Timing with DS and HS Mode

Sony/Philips Digital Interface (S/PDIF) Transmitter


Serial data input to the S/PDIF transmitter can be formatted as left justified, I²S, or right justified with word widths of 16, 18, 20, or 24 bits. The following sections provide timing for the transmitter.

S/PDIF Transmitter Serial Input Waveforms

Table 77 and Figure 54 show the right justified mode. Frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of the serial clock. The MSB is delayed the minimum in 24-bit output mode or the maximum in 16-bit output mode from a frame sync transition, so that when there are 64 serial clock periods per frame sync period, the LSB of the data is right justified to the next frame sync transition.

Table 77. S/PDIF Transmitter Right Justified Mode

Parameter	Conditions	Nominal	Unit
<i>Timing Requirement</i>			
t _{RJD}	Frame Sync to MSB Delay in Right Justified Mode	16-bit word mode	16
		18-bit word mode	14
		20-bit word mode	12
		24-bit word mode	8

Figure 54. Right Justified Mode

ADSP-SC596/ADSP-SC598

Table 78 and Figure 55 show the default I²S justified mode. The frame sync is low for the left channel and high for the right channel. Data is valid on the rising edge of the serial clock. The MSB is left justified to the frame sync transition but with a delay.

Table 78. S/PDIF Transmitter I²S Mode

Parameter	Nominal	Unit
Timing Requirement t _{I2SD} Frame Sync to MSB Delay in I ² S Mode	1	SCLK0

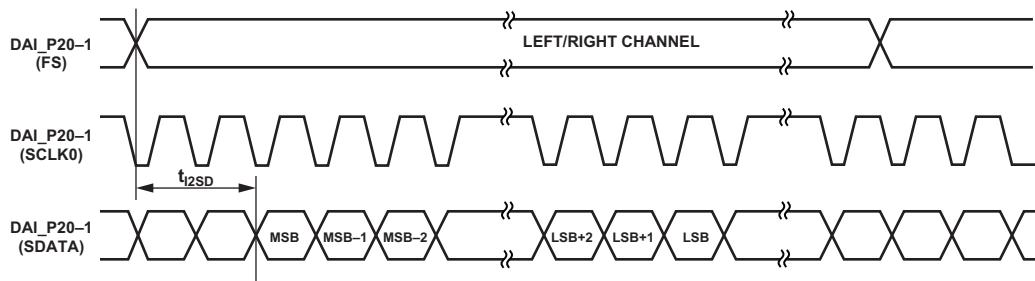


Figure 55. I²S Justified Mode

Table 79 and Figure 56 show the left justified mode. The frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of the serial clock. The MSB is left justified to the frame sync transition with no delay.

Table 79. S/PDIF Transmitter Left Justified Mode

Parameter	Nominal	Unit
Timing Requirement t _{LJD} Frame Sync to MSB Delay in Left Justified Mode	0	SCLK0

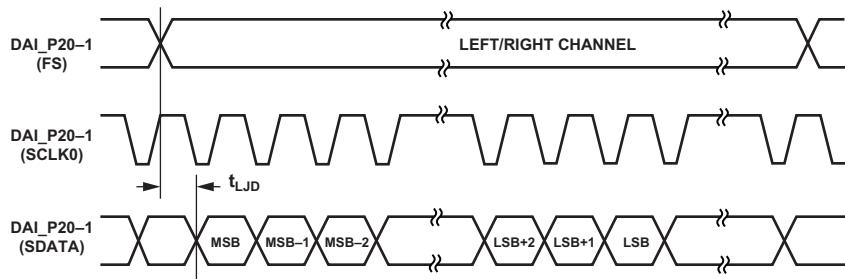
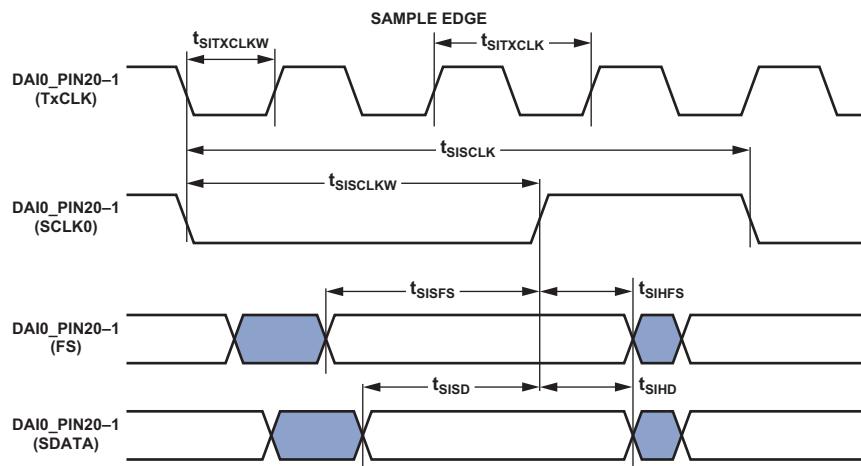


Figure 56. Left Justified Mode


S/PDIF Transmitter Input Data Timing

The timing requirements for the S/PDIF transmitter are given in [Table 80](#). Input signals are routed to the DAI0_PINx pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI0_PINx pins.

Table 80. S/PDIF Transmitter Input Data Timing

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t_{SISFS}^1	Frame Sync Setup Before Serial Clock Rising Edge	3.4		ns
t_{SIHFS}^1	Frame Sync Hold After Serial Clock Rising Edge	3		ns
t_{SISD}^1	Data Setup Before Serial Clock Rising Edge	3		ns
t_{SIHD}^1	Data Hold After Serial Clock Rising Edge	3		ns
$t_{SITXCLKW}$	Transmit Clock Width	9		ns
$t_{SITXCLK}$	Transmit Clock Period	20		ns
$t_{SISCLKW}$	Clock Width	36		ns
t_{SISCLK}	Clock Period	80		ns

¹The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The input of the PCG can be either CLKIN or any of the DAI pins.

Figure 57. S/PDIF Transmitter Input Timing

Oversampling Clock (TxCLK) Switching Characteristics

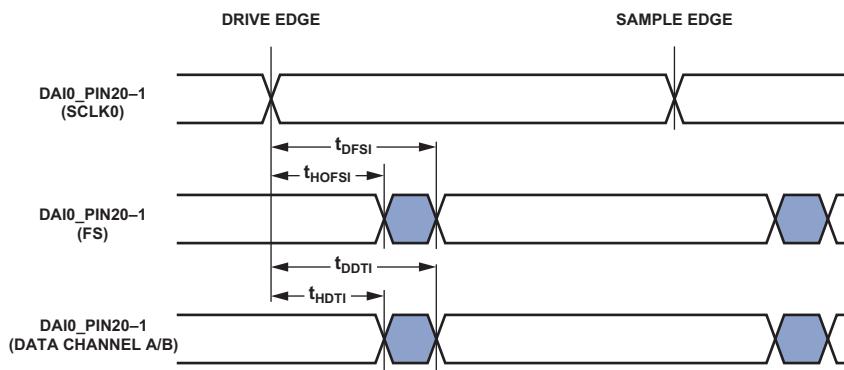
The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the internal biphasic clock.

Table 81. Oversampling Clock (TxCLK) Switching Characteristics

Parameter	Max	Unit
<i>Switching Characteristics</i>		
f_{TXCLK_384}	Frequency for TxCLK = $384 \times$ Frame Sync	Oversampling ratio \times frame sync $\leq 1/t_{SITXCLK}$
f_{TXCLK_256}	Frequency for TxCLK = $256 \times$ Frame Sync	MHz
f_{FS}	Frame Rate (FS)	49.2 kHz

ADSP-SC596/ADSP-SC598

S/PDIF Receiver


The following section describes timing as it relates to the S/PDIF receiver.

Internal Digital PLL Mode

In the internal digital PLL mode, the internal digital PLL generates the $512 \times \text{FS}$ clock.

Table 82. S/PDIF Receiver Internal Digital PLL Mode Timing

Parameter	Min	Max	Unit
<i>Switching Characteristics</i>			
t _{DFSI}		5	ns
t _{HOFSI}	-2		ns
t _{DDTI}		5	ns
t _{HDTI}	-2		ns

Figure 58. S/PDIF Receiver Internal Digital PLL Mode Timing

MediaLB (MLB)

All the numbers shown in [Table 83](#) are applicable for all MLB speed modes (1024 FS, 512 FS, and 256 FS) for the 3-pin protocol, unless otherwise specified. Refer to the *Media Local Bus Specification Version 4.2* for more details.

Table 83. 3-Pin MLB Interface Specifications

Parameter		Min	Typ	Max	Unit
t_{MLBCLK}	MLB Clock Period				
	1024 FS		20.3		ns
	512 FS		40		ns
t_{MCKL}	MLBCLK Low Time				
	1024 FS	6.1			ns
	512 FS	14			ns
t_{MCKH}	MLBCLK High Time				
	1024 FS	9.3			ns
	512 FS	14			ns
t_{MCKR}	MLBCLK Rise Time (V_{IL} to V_{IH})				
	1024 FS		1		ns
	512 FS/256 FS		3		ns
t_{MCKF}	MLBCLK Fall Time (V_{IH} to V_{IL})				
	1024 FS		1		ns
	512 FS/256 FS		3		ns
t_{MPWV}^1	MLBCLK Pulse Width Variation				
	1024 FS		0.7		nspp
t_{DSMCF}	DAT/SIG Input Setup Time	1			ns
	DAT/SIG Input Hold Time	2			ns
t_{MCFDZ}	DAT/SIG Output Time to Three-State	0		15	ns
t_{MCDRV}	DAT/SIG Output Data Delay From MLBCLK Rising Edge			8	ns
t_{MDZH}^2	Bus Hold Time				
	1024 FS	2			ns
	512 FS/256	4			ns
C_{MLB}	DAT/SIG Pin Load				
	1024 FS		40		pf
	512 FS/256		60		pf

¹Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in nanoseconds peak-to-peak.

²Board designs must ensure the high impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.

ADSP-SC596/ADSP-SC598

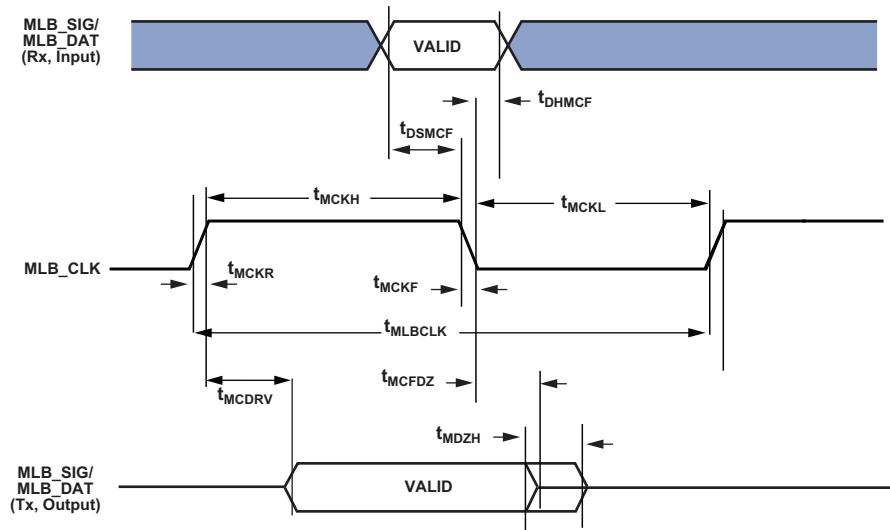


Figure 59. MLB Timing (3-Pin Interface)

The AC timing specifications of the 6-pin MLB interface is detailed in [Table 84](#). Refer to the *Media Local Bus Specification version 4.2* for more details.

Table 84. 6-Pin MLB Interface Specifications

Parameter	Conditions	Min	Typ	Max	Unit
t_{MT}	Differential Transition Time at the Input Pin (See Figure 60)			1	ns
f_{MCKE}	MLBCP/N External Clock Operating Frequency (See Figure 61) ¹	2048 × FS at 44.0 kHz	90.112		MHz
		2048 × FS at 50.0 kHz		102.4	MHz
f_{MCKR}	Recovered Clock Operating Frequency (Internal, Not Observable at Pins, Only for Timing References) (See Figure 61)	2048 × FS at 44.0 kHz	90.112		MHz
		2048 × FS at 50.0 kHz		102.4	MHz
t_{DELAY}	Transmitter MLBSP/N (MLBDP/N) Output Valid From Transition of MLBCP/N (Low to High) (See Figure 62)	$f_{MCKR} = 2048 \times FS$	0.6	5	ns
t_{PHZ}	Disable Turnaround Time From Transition of MLBCP/N (Low to High) (See Figure 63)	$f_{MCKR} = 2048 \times FS$	0.6	7	ns
t_{PLZ}	Enable Turnaround Time From Transition of MLBCP/N (Low to High) (See Figure 63)	$f_{MCKR} = 2048 \times FS$	0.6	11.2	ns
t_{SU}	MLBSP/N (MLBDP/N) Valid to Transition of MLBCP/N (Low to High) (See Figure 62)	$f_{MCKR} = 2048 \times FS$	1		ns
t_{HD}	MLBSP/N (MLBDP/N) Hold From Transition of MLBCP/N (Low to High) (See Figure 62) ²		0.6		ns

¹ f_{MCKE} (maximum) and f_{MCKR} (maximum) include maximum cycle to cycle system jitter (t_{JITTER}) of 600 ps for a bit error rate of 10E-9.

² Receivers must latch MLBSP/N (MLBDP/N) data within t_{HD} (minimum) of the rising edge of MLBCP/N.

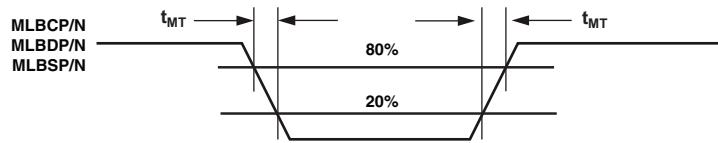


Figure 60. MLB 6-Pin Transition Time

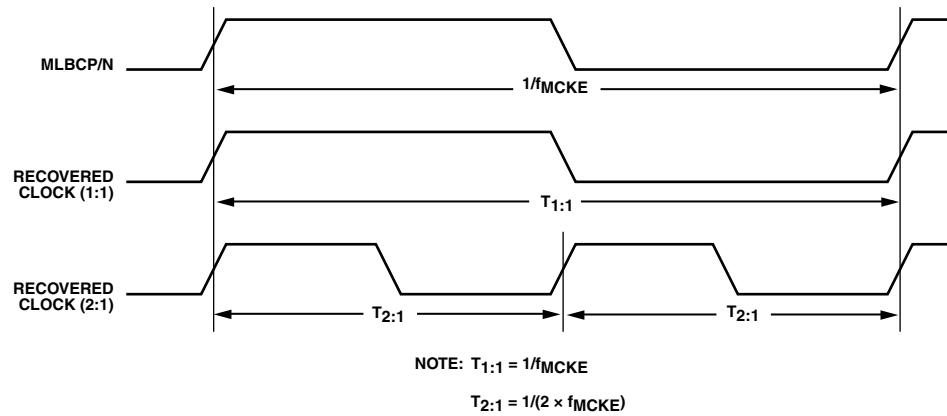


Figure 61. MLB 6-Pin Clock Definitions

ADSP-SC596/ADSP-SC598

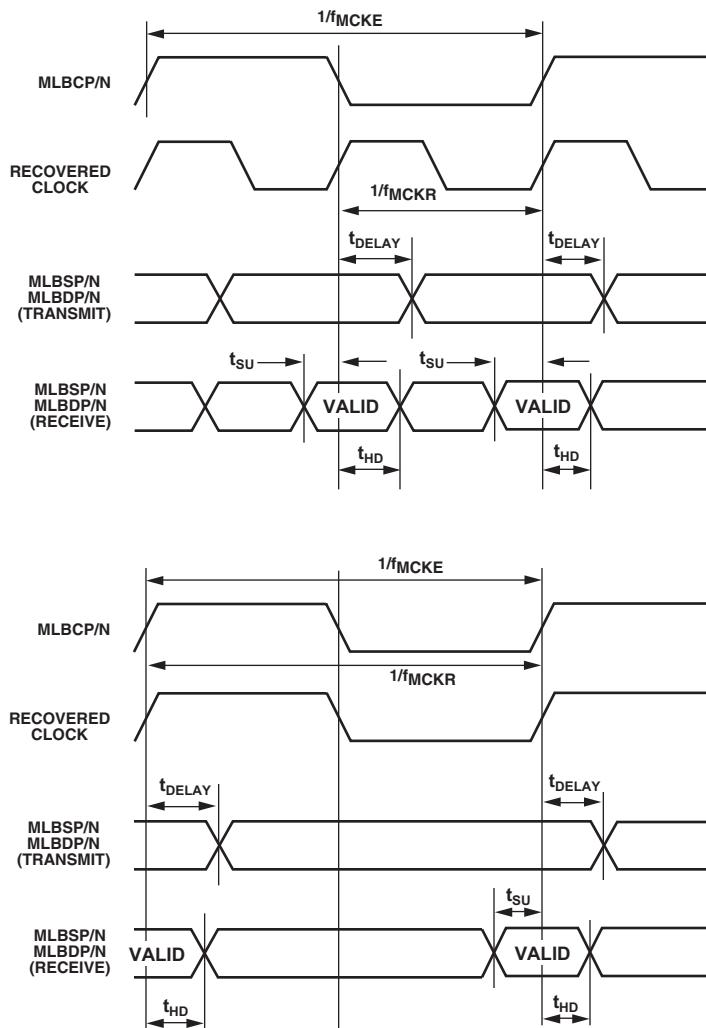


Figure 62. MLB 6-Pin Delay, Setup, and Hold Times

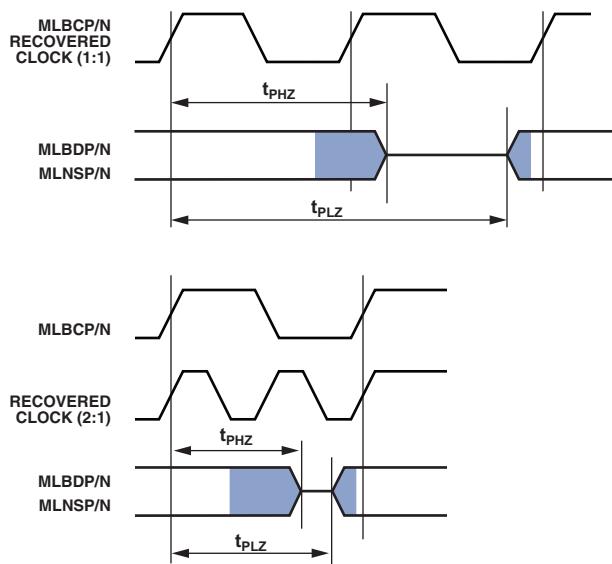


Figure 63. MLB 6-Pin Disable and Enable Turnaround Times

ADSP-SC596/ADSP-SC598

Program Trace Macrocell (PTM) Timing

Table 85 and Figure 64 provide I/O timing related to the PTM.

Table 85. TRACE0 Timing

Parameter	Min	Max	Unit
<i>Switching Characteristics</i>			
TDTRD	TRACE0 Data Delay From Trace Clock Maximum	$(\text{TRACE0_EXTCTLOUT} \times t_{\text{SCLK}0}) + (0.5 \times t_{\text{SCLK}0}) + 3$	ns
THTRD	TRACE0 Data Hold From Trace Clock Minimum	$0.5 \times t_{\text{SCLK}0} - 2$	ns
tPTRCK	TRACE0 Clock Period Minimum	$2 \times t_{\text{SCLK}0} - 1$	ns

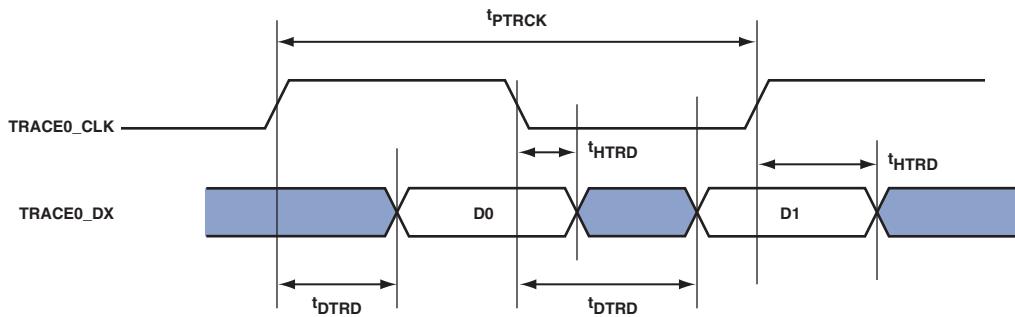


Figure 64. Trace Timing

Pulse Density Modulation (PDM) Timing

Table 86, Figure 65, and Figure 66 provide PDM and I²S/TDM interface timing.

Table 86. PDM Timing

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
t _{LIS}	FSYNC Setup Before BCLK	3		ns
t _{LIH}	FSYNC Hold After BCLK	4		ns
t _{BIH}	BCLK Pulse Width High	10		ns
t _{BIL}	BCLK Pulse Width Low	10		ns
t _{SETUP}	Data Setup Before PDM_CLK	12		ns
t _{HOLD}	Data Hold After PDM_CLK	4		ns
<i>Switching Characteristic</i>				
t _{SODM}	SDATA Maximum Output Delay From BCLK Falling Edge		12	ns

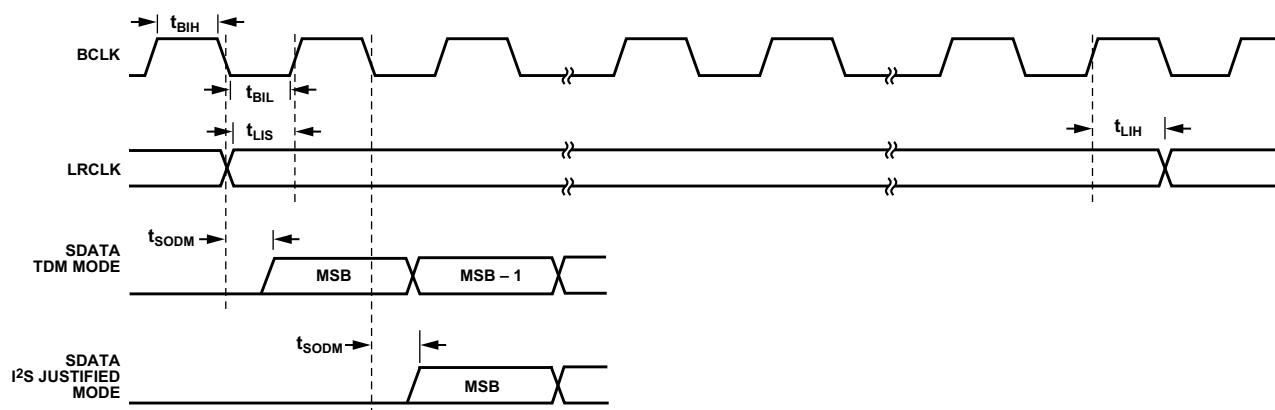


Figure 65. Serial Port Timing

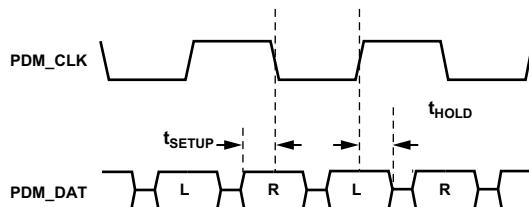


Figure 66. PDM Timing

ADSP-SC596/ADSP-SC598

Debug Interface (JTAG Emulation Port) Timing

Table 87 and Figure 67 provide I/O timing related to the debug interface (JTAG emulator port).

Table 87. JTAG Emulation Port Timing

Parameter		Min	Max	Unit
<i>Timing Requirements</i>				
tTCK	JTG_TCK Period	20		ns
tSTAP	JTG_TDI, JTG_TMS Setup Before JTG_TCK High	4		ns
tHTAP	JTG_TDI, JTG_TMS Hold After JTG_TCK High	4		ns
tSSYS	System Inputs Setup Before JTG_TCK High ¹	4		ns
tHSYS	System Inputs Hold After JTG_TCK High ¹	4		ns
tTRSTW	JTG_TRST Pulse Width (Measured in JTG_TCK Cycles) ²	4		T _{CK}
<i>Switching Characteristics</i>				
tDTDO	JTG_TDO Delay From JTG_TCK Low		12	ns
tDSYS	System Outputs Delay After JTG_TCK Low ³		17	ns

¹ System Inputs = MLB0_CLKP, MLB0_DATP, MLB0_SIGP, DAI0_PIN20-1, DAI1_PIN20-1, DMC0_A15-0, DMC0_DQ15-0, DMC0_RESET, PA_15-0, PB_15-0, PC_15-0, PD_15-0, PE_15-0, PF_15-0, PG_15-0, PH_15-0, PI_6-0, SYS_BMODE2-0, SYS_FAULT, SYS_FAULT.

² 50 MHz maximum.

³ System Outputs = MLB0_CLKP, MLB0_DATP, MLB0_SIGP, DAI0_PIN20-1, DAI1_PIN20-1, DMC0_A15-0, DMC0_BA2-0, DMC0_CAS, DMC0_CK, DMC0_CKE, DMC0_CS0, DMC0_DQ15-0, DMC0_LDM, DMC0_LDQS, DMC0_ODT, DMC0_RAS, DMC0_RESET, DMC0_UDM, DMC0_UDQS, DMC0_WE, PA_15-0, PB_15-0, PC_7-0, PD_15-0, PE_15-0, PF_15-0, PG_15-0, PH_15-0, PI_6-0, SYS_CLKOUT, SYS_FAULT, SYS_FAULT, SYS_RESOUT.

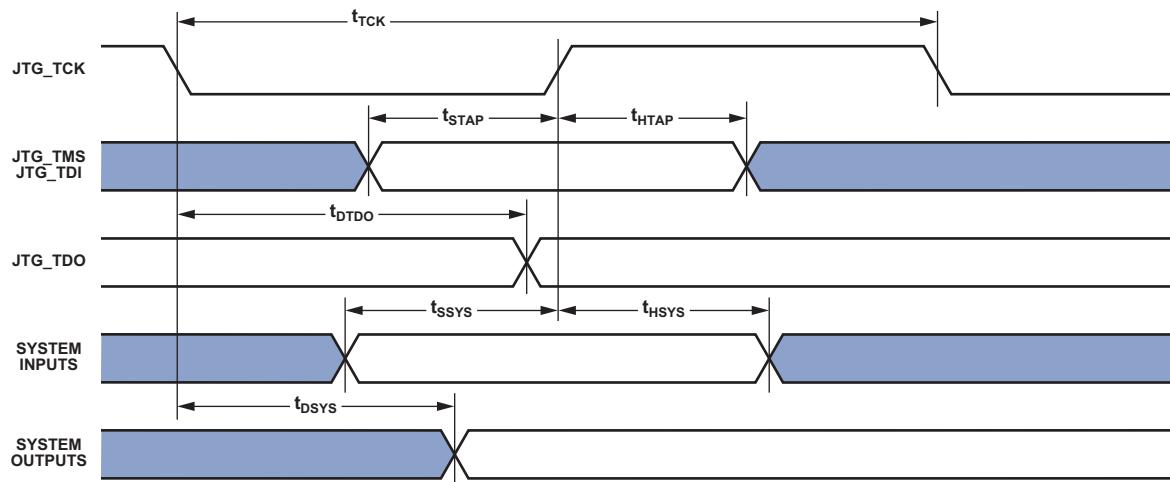


Figure 67. JTAG Port Timing

OUTPUT DRIVE CURRENTS

Figure 68 through Figure 89 show typical current voltage characteristics for the output drivers of the ADSP-SC596/ADSP-SC598 processors. The curves represent the current drive capability of the output drivers as a function of output voltage.

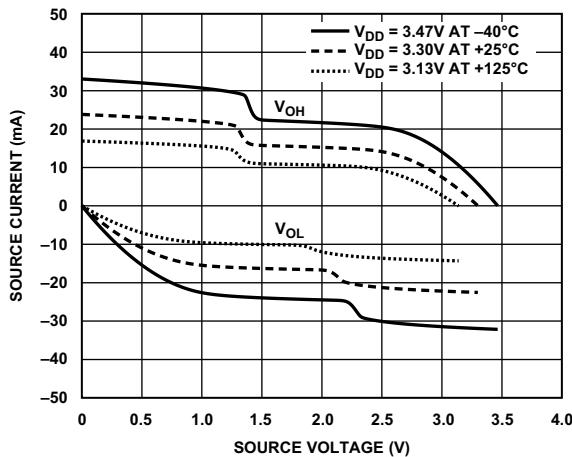


Figure 68. Driver Type A Current for All Pins Operating at Less Than or Equal to 62.5 MHz (3.3 V V_{DD_EXT})

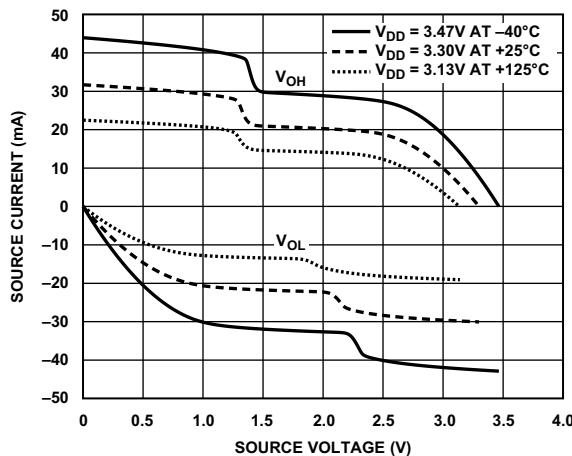


Figure 69. Driver Type A Current for All Pins Operating Above 62.5 MHz and Less Than or Equal to 125 MHz (3.3 V V_{DD_EXT})

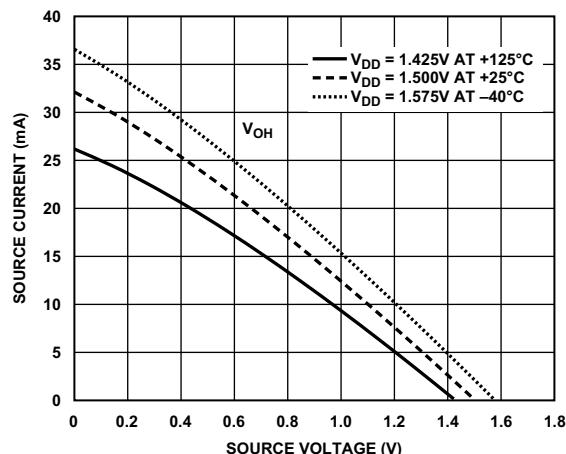


Figure 70. Driver Type B and Driver Type C (DDR3 Drive Strength 40 Ω)

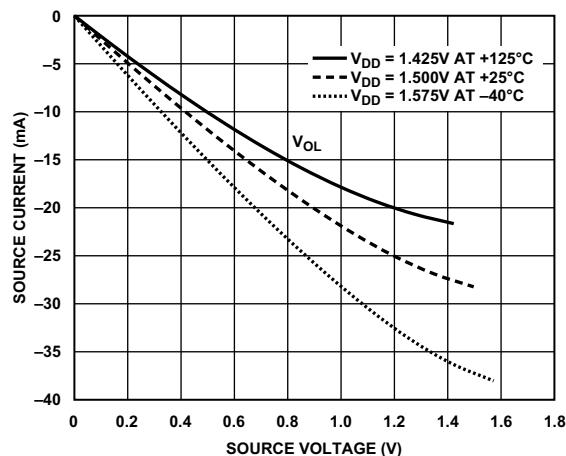


Figure 71. Driver Type B and Driver Type C (DDR3 Drive Strength 40 Ω)

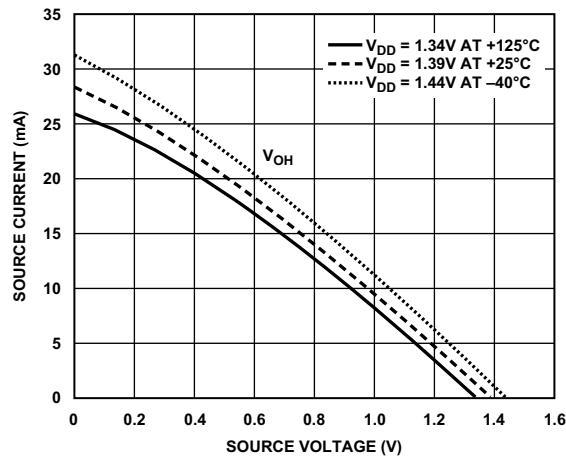


Figure 72. Driver Type B and Driver Type C (DDR3L Drive Strength 40 Ω)

ADSP-SC596/ADSP-SC598

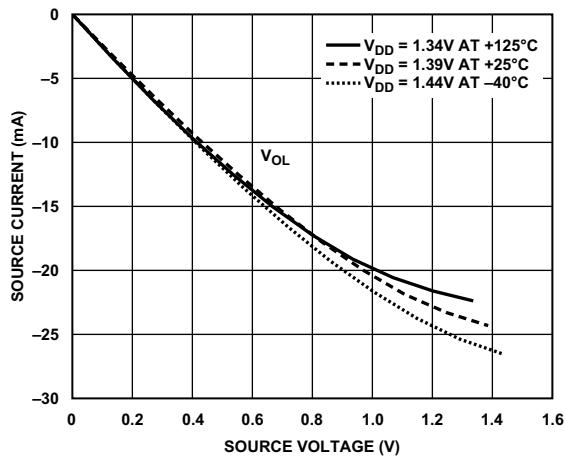


Figure 73. Driver Type B and Driver Type C (DDR3L Drive Strength $40\ \Omega$)

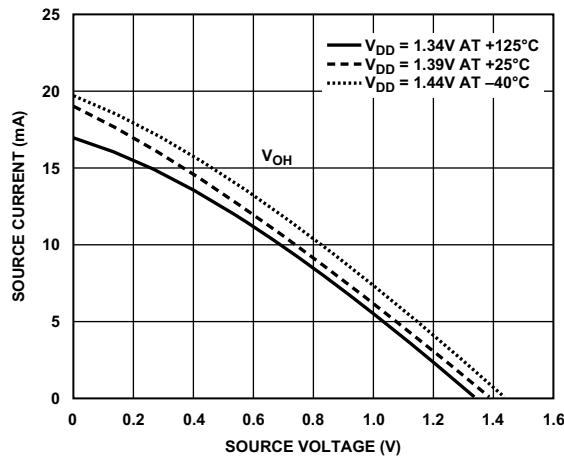


Figure 76. Driver Type B and Driver Type C (DDR3L Drive Strength $60\ \Omega$)

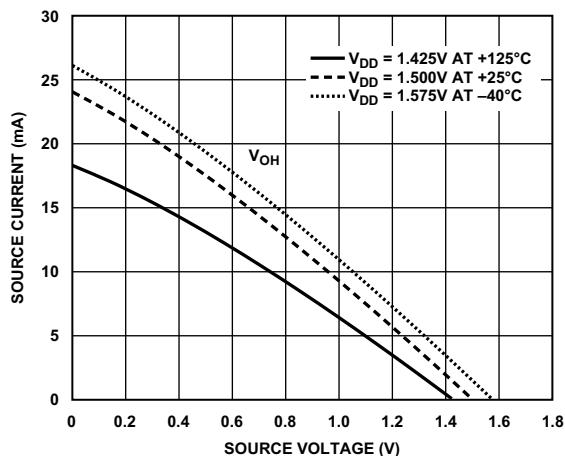


Figure 74. Driver Type B and Driver Type C (DDR3 Drive Strength $60\ \Omega$)

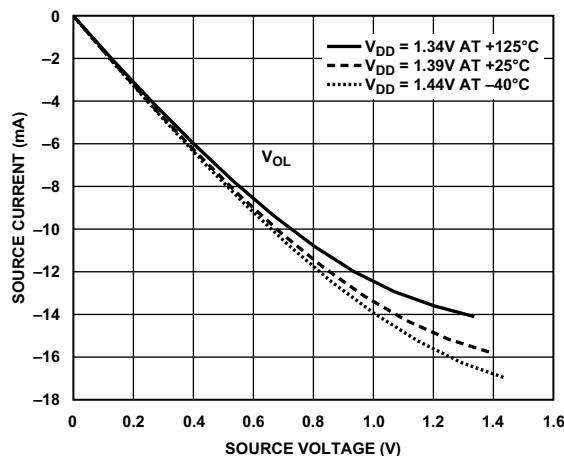


Figure 77. Driver Type B and Driver Type C (DDR3L Drive Strength $60\ \Omega$)

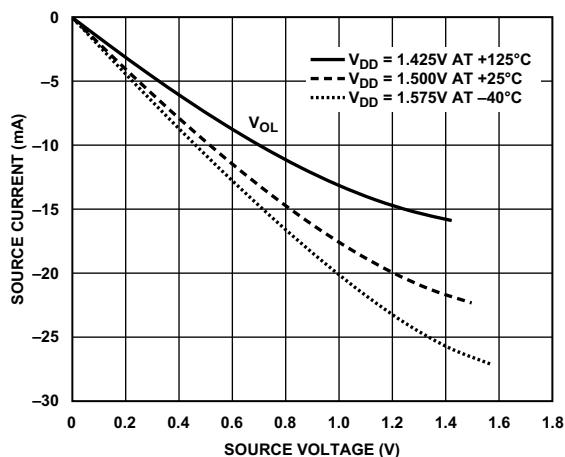


Figure 75. Driver Type B and Driver Type C (DDR3 Drive Strength $60\ \Omega$)

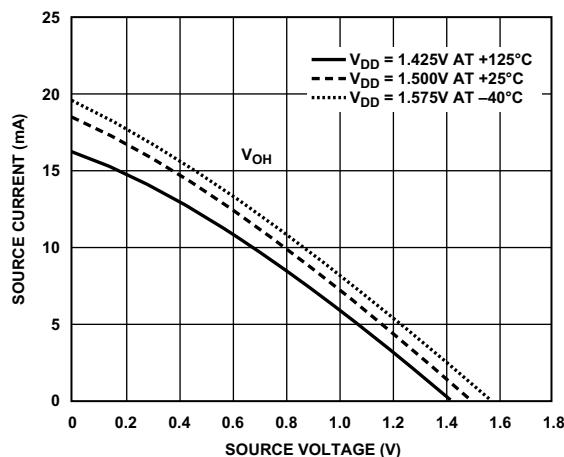


Figure 78. Driver Type B and Driver Type C (DDR3 Drive Strength $70\ \Omega$)

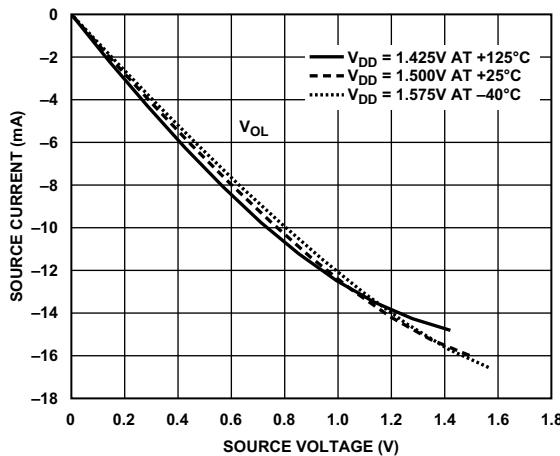


Figure 79. Driver Type B and Driver Type C (DDR3 Drive Strength $70\ \Omega$)

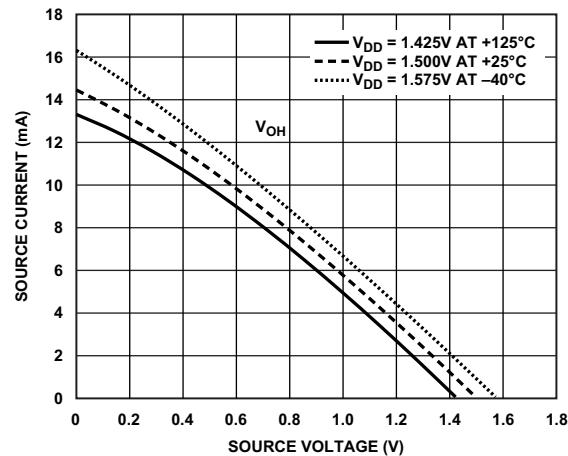


Figure 82. Driver Type B and Driver Type C (DDR3 Drive Strength $90\ \Omega$)

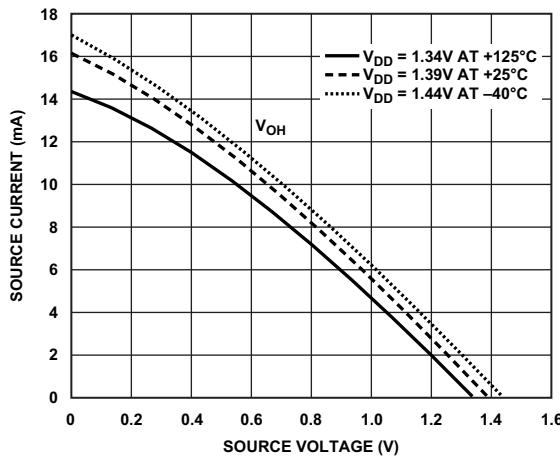


Figure 80. Driver Type B and Driver Type C (DDR3L Drive Strength $70\ \Omega$)

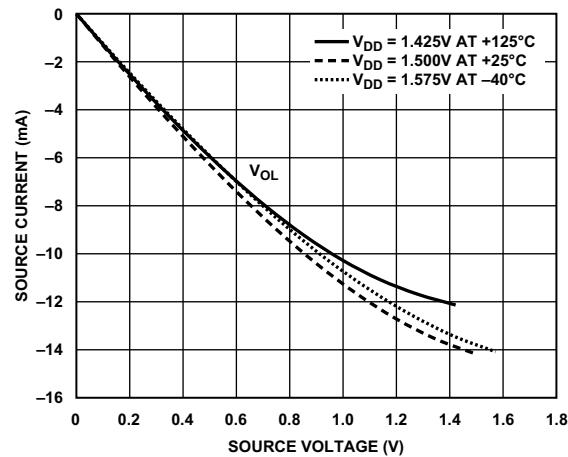


Figure 83. Driver Type B and Driver Type C (DDR3 Drive Strength $90\ \Omega$)

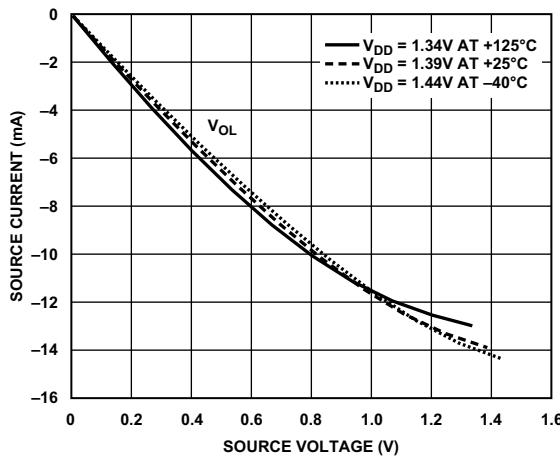


Figure 81. Driver Type B and Driver Type C (DDR3L Drive Strength $70\ \Omega$)

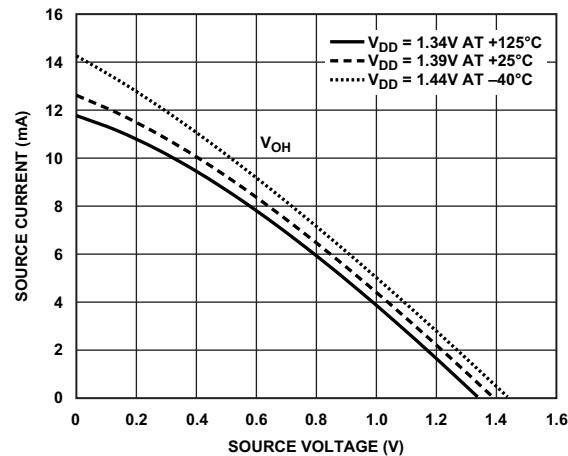


Figure 84. Driver Type B and Driver Type C (DDR3L Drive Strength $90\ \Omega$)

ADSP-SC596/ADSP-SC598

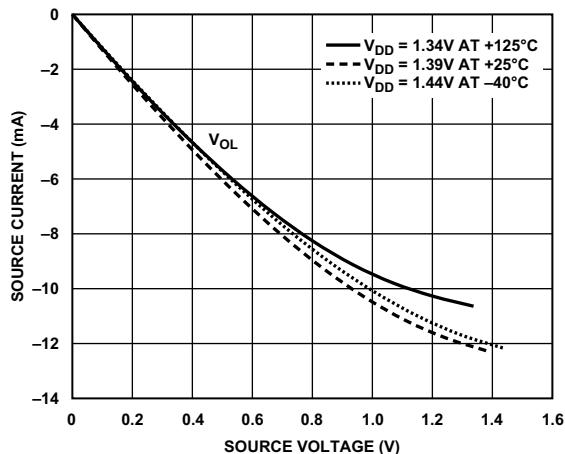


Figure 85. Driver Type B and Driver Type C (DDR3L Drive Strength $90\ \Omega$)

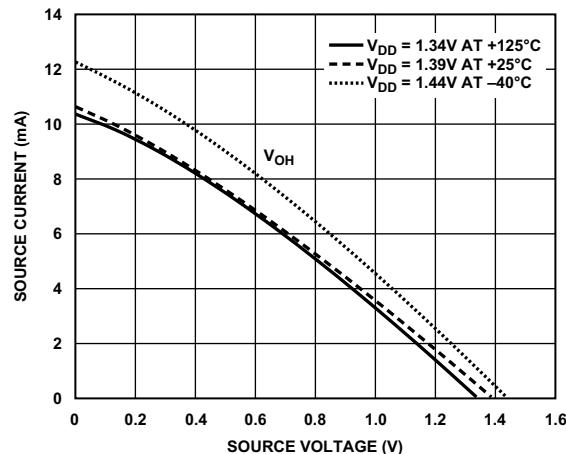


Figure 88. Driver Type B and Driver Type C (DDR3L Drive Strength $100\ \Omega$)

Figure 86. Driver Type B and Driver Type C (DDR3 Drive Strength $100\ \Omega$)

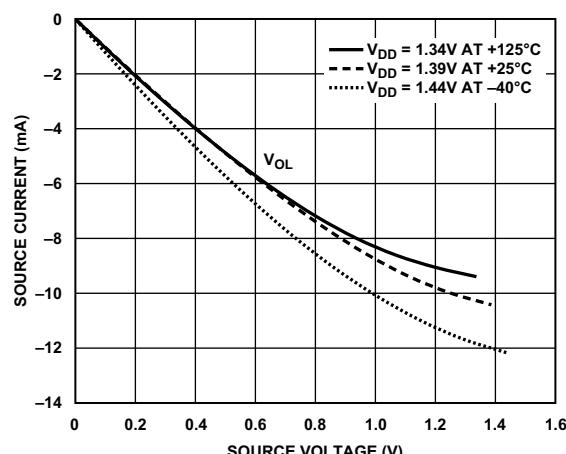


Figure 89. Driver Type B and Driver Type C (DDR3L Drive Strength $100\ \Omega$)

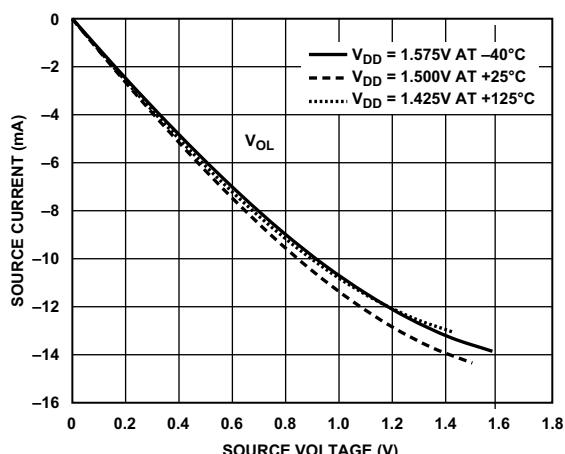


Figure 87. Driver Type B and Driver Type C (DDR3 Drive Strength $100\ \Omega$)

TEST CONDITIONS

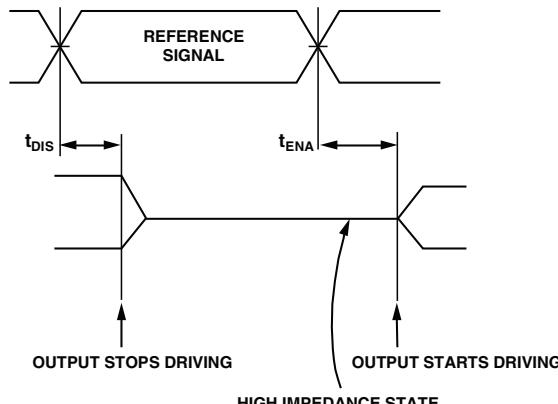
All timing parameters appearing in this data sheet were measured under the conditions described in this section. Figure 90 shows the measurement point for AC measurements (except output enable/disable). The measurement point, V_{MEAS} , is $V_{DD_EXT}/2$ for V_{DD_EXT} (nominal) = 3.3 V.

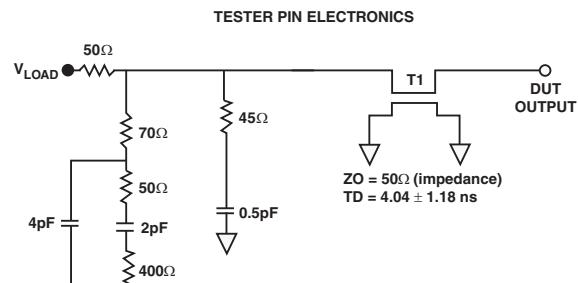
Figure 90. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Enable Time Measurement

Output pins are considered enabled when they make a transition from a high impedance state to the point when they start driving.

The output enable time, t_{ENA} , is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving, as shown on the right side of Figure 91. If multiple pins are enabled, the measurement value is that of the first pin to start driving.




Figure 91. Output Enable/Disable

Output Disable Time Measurement

Output pins are considered disabled when they stop driving, enter a high impedance state, and start to decay from the output high or low voltage. The output disable time, t_{DIS} , is the interval from when a reference signal reaches a high or low voltage level to the point when the output stops driving, as shown on the left side of Figure 91.

Capacitive Loading

Output delays and holds are based on standard capacitive loads of an average of 6 pF on all pins (see Figure 92). V_{LOAD} is equal to $V_{DD_EXT}/2$. Figure 93 through Figure 96 show how output rise time varies with capacitance. The delay and hold specifications given must be derated by a factor derived from these figures. The graphs in Figure 93 through Figure 96 cannot be linear outside the ranges shown.

NOTES:
THE WORST-CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, THE SYSTEM CAN INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 92. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

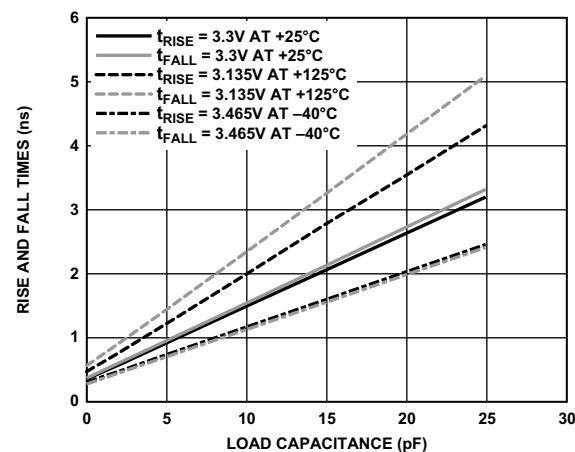


Figure 93. Driver Type A Rise and Fall Times (10% to 90%) vs. Load Capacitance for All Pins Operating Above 62.5 MHz and Less Than or Equal to 125 MHz

ADSP-SC596/ADSP-SC598

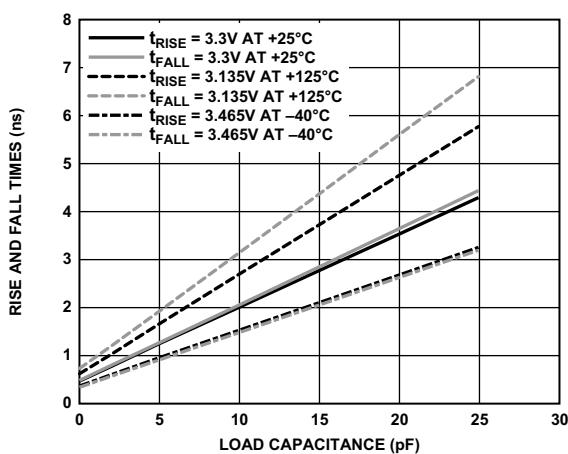


Figure 94. Driver Type A Rise and Fall Times (10% to 90%) vs. Load Capacitance for All Pins Operating at Less Than or Equal to 62.5 MHz

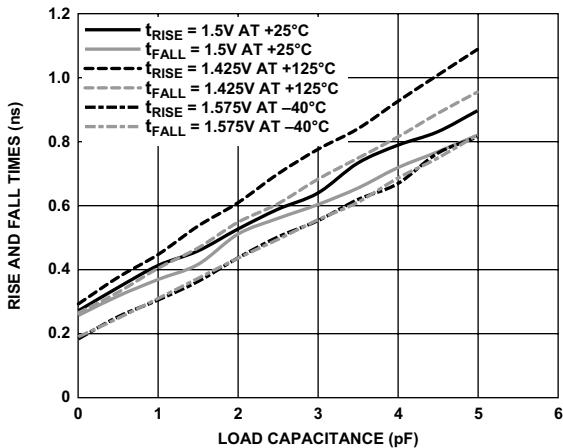


Figure 95. Driver Type B and Driver Type C Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for DDR3 at 100 Ω

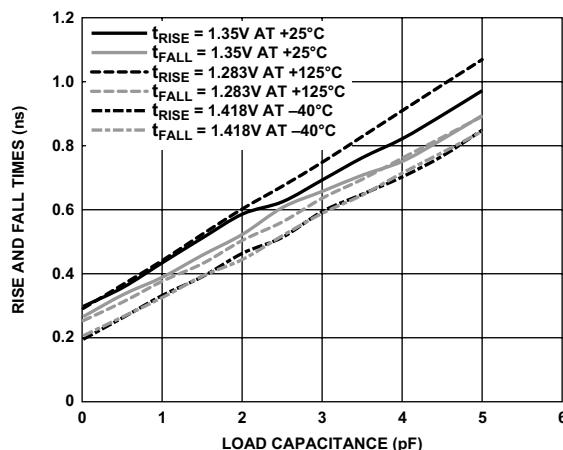


Figure 96. Driver Type B and Driver Type C Rise and Fall Times (10% to 90%) vs. Load Capacitance for DDR3L at 100 Ω

ENVIRONMENTAL CONDITIONS

The ADSP-SC596/ADSP-SC598 processors are rated for performance over the temperature range specified in the [Operating Conditions](#) section.

Application system thermal simulation is required for accurate temperature analysis. The thermal simulation must account for all specific 3D system design features, including, but not limited to other heat sources, use of heat sinks, use of thermal interface materials, and the system enclosure details. Thermal models of the package are available from Analog Devices under the [Tools and Simulations](#) tab of the product web page. The thermal model(s) are compatible with all major thermal simulation tools.

The use of JEDEC θ_{JA} , θ_{JC} , or Ψ_{JT} thermal parameters for application system thermal estimates is not recommended as indicated in the JEDEC51 specifications:

“This methodology is not meant to and will not predict the performance of a package in an application-specific environment.”

ADSP-SC596/ADSP-SC598 400-BALL BGA_ED BALL ASSIGNMENTS

The ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Ball Assignments (Numerical by Ball Number) table lists the package by ball number.

The ADSP-SC596/ADSP-SC598 400-Ball BGA_ED Ball Assignments (Alphabetical by Pin Name) table lists the package by pin name.

ADSP-SC596/ADSP-SC598 400-BALL BGA_ED BALL ASSIGNMENTS (NUMERICAL BY BALL NUMBER)

Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name
A01	GND	C02	PG_14	E03	PI_03	G04	PH_15
A02	PG_12	C03	GND	E04	PH_00	G05	PH_02
A03	JTG_TDO	C04	PB_05	E05	GND	G06	VDD_INT
A04	JTG_TDI	C05	<u>JTG_TRST</u>	E06	PB_04	G07	GND
A05	DMC0_DQ00	C06	DMC0_DQ01	E07	<u>SYS_RESOUT</u>	G08	GND
A06	DMC0_LDQS	C07	DMC0_DQ05	E08	DMC0_LDM	G09	GND
A07	<u>DMC0_LDQS</u>	C08	DMC0_DQ04	E09	GND	G10	GND
A08	DMC0_DQ08	C09	DMC0_DQ11	E10	VDD_DMC	G11	GND
A09	DMC0_UDQS	C10	DMC0_A14	E11	VDD_DMC	G12	VDD_INT
A10	<u>DMC0_UDQS</u>	C11	DMC0_A10	E12	VDD_DMC	G13	VDD_INT
A11	DMC0_VREF0	C12	DMC0_A15	E13	GND	G14	VDD_INT
A12	DMC0_DQ12	C13	DMC0_A09	E14	DMC0_A02	G15	GND
A13	DMC0_A13	C14	DMC0_A04	E15	DMC0_BA2	G16	<u>SYS_FAULT</u>
A14	DMC0_A08	C15	DMC0_A00	E16	GND	G17	PF_06
A15	DMC0_A03	C16	<u>DMC0_CS0</u>	E17	PB_01	G18	PE_15
A16	DMC0_A01	C17	<u>DMC0_CAS</u>	E18	PF_10	G19	PE_11
A17	DMC0_CK	C18	GND	E19	PF_03	G20	DAI1_PIN18
A18	<u>DMC0_CK</u>	C19	PF_14	E20	PF_02	H01	GND
A19	PB_00	C20	PF_09	F01	PH_08	H02	PH_05
A20	GND	D01	PI_01	F02	PH_04	H03	PH_09
B01	PG_13	D02	PI_04	F03	PH_11	H04	PH_14
B02	GND	D03	PG_15	F04	PI_02	H05	PI_06
B03	PG_11	D04	GND	F05	PH_01	H06	VDD_INT
B04	JTG_TCK	D05	PB_03	F06	GND	H07	VDD_EXT
B05	JTG_TMS	D06	<u>SYS_HWRST</u>	F07	VDD_DMC	H08	VDD_INT
B06	DMC0_DQ02	D07	DMC0_DQ03	F08	VDD_DMC	H09	VDD_EXT
B07	DMC0_DQ07	D08	DMC0_DQ09	F09	VDD_DMC	H10	VDD_INT
B08	DMC0_DQ06	D09	DMC0_DQ13	F10	VDD_DMC	H11	VDD_EXT
B09	DMC0_DQ10	D10	<u>DMC0_RESET</u>	F11	VDD_DMC	H12	VDD_INT
B10	DMC0_DQ15	D11	<u>DMC0_WE</u>	F12	VDD_DMC	H13	VDD_EXT
B11	DMC0_A12	D12	DMC0_UDM	F13	VDD_DMC	H14	VDD_EXT
B12	DMC0_DQ14	D13	DMC0_BA0	F14	VDD_DMC	H15	VDD_INT
B13	DMC0_A11	D14	DMC0_BA1	F15	GND	H16	PF_12
B14	DMC0_A06	D15	DMC0_A05	F16	PB_02	H17	PF_04
B15	DMC0_A07	D16	<u>DMC0_RAS</u>	F17	PF_11	H18	PE_12
B16	DMC0_RZQ	D17	GND	F18	PF_01	H19	DAI1_PIN17
B17	DMC0_CKE	D18	<u>SYS_FAULT</u>	F19	PF_00	H20	DAI1_PIN14
B18	DMC0_ODT	D19	PF_08	F20	PE_10	J01	SYS_CLKIN0
B19	GND	D20	PF_07	G01	GND	J02	SYS_CLKOUT
B20	PF_13	E01	SYS_XTAL1	G02	SYS_BMODE1	J03	PH_12
C01	PI_05	E02	SYS_CLKIN1	G03	PH_10	J04	PH_13

ADSP-SC596/ADSP-SC598

Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name
J05	PI_00	L13	GND	P01	GND	T09	PA_15
J06	GND	L14	GND	P02	PA_08	T10	PF_15
J07	GND	L15	GND	P03	PC_12	T11	PG_06
J08	GND	L16	DAI1_PIN01	P04	PD_02	T12	PG_10
J09	GND	L17	DAI1_PIN04	P05	PD_09	T13	DAI0_PIN09
J10	GND	L18	DAI1_PIN05	P06	VDD_INT	T14	VDD_INT
J11	GND	L19	HADC0_VIN3	P07	GND	T15	VDD_INT
J12	GND	L20	HADC0_VIN1	P08	GND	T16	GND
J13	GND	M01	GND	P09	GND	T17	PC_07
J14	GND	M02	PA_05	P10	VDD_REF	T18	DAI0_PIN16
J15	GND	M03	PA_06	P11	VDD_REF	T19	DAI1_PIN12
J16	PF_05	M04	PC_08	P12	VDD_REF	T20	DAI1_PIN19
J17	PE_13	M05	PA_10	P13	GND	U01	PC_10
J18	DAI1_PIN16	M06	VDD_INT	P14	GND	U02	PD_00
J19	DAI1_PIN13	M07	VDD_EXT	P15	VDD_INT	U03	PD_06
J20	DAI1_PIN02	M08	VDD_PLL	P16	PC_05	U04	GND
K01	GND	M09	VDD_PLL	P17	DAI0_PIN15	U05	PB_10
K02	PA_00	M10	VDD_INT	P18	DAI1_PIN08	U06	PB_11
K03	PH_03	M11	VDD_INT	P19	HADC0_VIN4	U07	VDD_INT
K04	PH_06	M12	VDD_INT	P20	HADC0_VIN5	U08	PA_12
K05	PH_07	M13	VDD_INT	R01	SYS_XTAL0	U09	PE_01
K06	VDD_INT	M14	VDD_EXT	R02	PC_09	U10	PE_06
K07	VDD_EXT	M15	VDD_INT	R03	PD_01	U11	PG_00
K08	VDD_PLL	M16	DAI1_PIN10	R04	PD_10	U12	PG_07
K09	VDD_PLL	M17	DAI1_PIN09	R05	PD_08	U13	DAI0_PIN01
K10	VDD_INT	M18	DAI1_PIN06	R06	GND	U14	DAI0_PIN10
K11	VDD_INT	M19	HADC0_VIN6	R07	VDD_INT	U15	VDD_INT
K12	VDD_INT	M20	GND	R08	VDD_INT	U16	PC_03
K13	VDD_INT	N01	SYS_BMODE2	R09	VDD_INT	U17	GND
K14	VDD_EXT	N02	PA_07	R10	VDD_INT	U18	PC_04
K15	VDD_INT	N03	PA_09	R11	VDD_INT	U19	DAI0_PIN18
K16	PE_14	N04	PC_11	R12	VDD_INT	U20	DAI1_PIN20
K17	DAI1_PIN15	N05	PC_15	R13	VDD_INT	V01	PC_14
K18	DAI1_PIN03	N06	VDD_INT	R14	VDD_INT	V02	PD_04
K19	HADC0_VIN2	N07	VDD_EXT	R15	GND	V03	GND
K20	HADC0_VIN0	N08	GND	R16	PC_06	V04	PB_06
L01	SYS_BMODE0	N09	GND	R17	DAI0_PIN14	V05	PB_12
L02	PA_02	N10	GND	R18	DAI0_PIN17	V06	PA_14
L03	PA_01	N11	GND	R19	HADC0_VREFP	V07	PA_11
L04	PA_04	N12	GND	R20	VDD_ANA	V08	PE_02
L05	PA_03	N13	GND	T01	GND	V09	PE_08
L06	GND	N14	VDD_EXT	T02	PC_13	V10	PE_05
L07	GND	N15	VDD_INT	T03	PD_03	V11	PG_02
L08	GND	N16	DAI0_PIN13	T04	PD_07	V12	PG_09
L09	GND	N17	DAI1_PIN11	T05	GND	V13	PG_04
L10	GND	N18	DAI1_PIN07	T06	VDD_INT	V14	DAI0_PIN08
L11	GND	N19	HADC0_VIN7	T07	VDD_INT	V15	DAI0_PIN05
L12	GND	N20	HADC0_VREFN	T08	GND	V16	DAI0_PIN11

Ball No.	Pin Name
V17	PC_02
V18	GND
V19	PC_01
V20	PB_15
W01	PD_05
W02	GND
W03	PD_11
W04	PD_12
W05	PB_13
W06	PD_14
W07	PE_00
W08	PE_03
W09	PE_04
W10	PE_09
W11	PG_01
W12	PE_07
W13	DAI0_PIN04
W14	PG_05
W15	DAI0_PIN02
W16	DAI0_PIN07
W17	PB_14
W18	DAI0_PIN20
W19	GND
W20	PC_00
Y01	GND
Y02	PB_08
Y03	PB_07
Y04	PB_09
Y05	PA_13
Y06	PD_15
Y07	PD_13
Y08	MLB0_CLKN
Y09	MLB0_CLKP
Y10	MLB0_DATN
Y11	MLB0_DATP
Y12	MLB0_SIGN
Y13	MLB0_SIGP
Y14	PG_03
Y15	PG_08
Y16	DAI0_PIN03
Y17	DAI0_PIN06
Y18	DAI0_PIN12
Y19	DAI0_PIN19
Y20	GND

ADSP-SC596/ADSP-SC598

ADSP-SC596/ADSP-SC598 400-BALL BGA_ED BALL ASSIGNMENTS (ALPHABETICAL BY PIN NAME)

Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.
DAI0_PIN01	U13	DMC0_A06	B14	GND	A01	GND	N09
DAI0_PIN02	W15	DMC0_A07	B15	GND	A20	GND	N10
DAI0_PIN03	Y16	DMC0_A08	A14	GND	B02	GND	N11
DAI0_PIN04	W13	DMC0_A09	C13	GND	B19	GND	N12
DAI0_PIN05	V15	DMC0_A10	C11	GND	C03	GND	N13
DAI0_PIN06	Y17	DMC0_A11	B13	GND	C18	GND	P01
DAI0_PIN07	W16	DMC0_A12	B11	GND	D04	GND	P07
DAI0_PIN08	V14	DMC0_A13	A13	GND	D17	GND	P08
DAI0_PIN09	T13	DMC0_A14	C10	GND	E05	GND	P09
DAI0_PIN10	U14	DMC0_A15	C12	GND	E09	GND	P13
DAI0_PIN11	V16	DMC0_BA0	D13	GND	E13	GND	P14
DAI0_PIN12	Y18	DMC0_BA1	D14	GND	E16	GND	R06
DAI0_PIN13	N16	DMC0_BA2	E15	GND	F06	GND	R15
DAI0_PIN14	R17	DMC0_CAS	C17	GND	F15	GND	T01
DAI0_PIN15	P17	DMC0_CK	A17	GND	G01	GND	T05
DAI0_PIN16	T18	DMC0_CK	A18	GND	G07	GND	T08
DAI0_PIN17	R18	DMC0_CKE	B17	GND	G08	GND	T16
DAI0_PIN18	U19	DMC0_CS0	C16	GND	G09	GND	U04
DAI0_PIN19	Y19	DMC0_DQ00	A05	GND	G10	GND	U17
DAI0_PIN20	W18	DMC0_DQ01	C06	GND	G11	GND	V03
DAI1_PIN01	L16	DMC0_DQ02	B06	GND	G15	GND	V18
DAI1_PIN02	J20	DMC0_DQ03	D07	GND	H01	GND	W02
DAI1_PIN03	K18	DMC0_DQ04	C08	GND	J06	GND	W19
DAI1_PIN04	L17	DMC0_DQ05	C07	GND	J07	GND	Y01
DAI1_PIN05	L18	DMC0_DQ06	B08	GND	J08	GND	Y20
DAI1_PIN06	M18	DMC0_DQ07	B07	GND	J09	HADC0_VIN0	K20
DAI1_PIN07	N18	DMC0_DQ08	A08	GND	J10	HADC0_VIN1	L20
DAI1_PIN08	P18	DMC0_DQ09	D08	GND	J11	HADC0_VIN2	K19
DAI1_PIN09	M17	DMC0_DQ10	B09	GND	J12	HADC0_VIN3	L19
DAI1_PIN10	M16	DMC0_DQ11	C09	GND	J13	HADC0_VIN4	P19
DAI1_PIN11	N17	DMC0_DQ12	A12	GND	J14	HADC0_VIN5	P20
DAI1_PIN12	T19	DMC0_DQ13	D09	GND	J15	HADC0_VIN6	M19
DAI1_PIN13	J19	DMC0_DQ14	B12	GND	K01	HADC0_VIN7	N19
DAI1_PIN14	H20	DMC0_DQ15	B10	GND	L06	HADC0_VREFN	N20
DAI1_PIN15	K17	DMC0_LDM	E08	GND	L07	HADC0_VREFP	R19
DAI1_PIN16	J18	DMC0_LDQS	A06	GND	L08	JTG_TCK	B04
DAI1_PIN17	H19	DMC0_LDQS	A07	GND	L09	JTG_TDI	A04
DAI1_PIN18	G20	DMC0_ODT	B18	GND	L10	JTG_TDO	A03
DAI1_PIN19	T20	DMC0_RAS	D16	GND	L11	JTG_TMS	B05
DAI1_PIN20	U20	DMC0_RESET	D10	GND	L12	JTG_TRST	C05
DMC0_A00	C15	DMC0_RZQ	B16	GND	L13	MLB0_CLKN	Y08
DMC0_A01	A16	DMC0_UDM	D12	GND	L14	MLB0_CLKP	Y09
DMC0_A02	E14	DMC0_UDQS	A09	GND	L15	MLB0_DATN	Y10
DMC0_A03	A15	DMC0_UDQS	A10	GND	M01	MLB0_DATP	Y11
DMC0_A04	C14	DMC0_VREF0	A11	GND	M20	MLB0_SIGN	Y12
DMC0_A05	D15	DMC0_WE	D11	GND	N08	MLB0_SIGP	Y13

ADSP-SC596/ADSP-SC598

Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.	Pin Name	Ball No.
PA_00	K02	PD_00	U02	PG_00	U11	SYS_RESOUT	E07
PA_01	L03	PD_01	R03	PG_01	W11	SYS_XTAL0	R01
PA_02	L02	PD_02	P04	PG_02	V11	SYS_XTAL1	E01
PA_03	L05	PD_03	T03	PG_03	Y14	VDD_ANA	R20
PA_04	L04	PD_04	V02	PG_04	V13	VDD_DMC	E10
PA_05	M02	PD_05	W01	PG_05	W14	VDD_DMC	E11
PA_06	M03	PD_06	U03	PG_06	T11	VDD_DMC	E12
PA_07	N02	PD_07	T04	PG_07	U12	VDD_DMC	F07
PA_08	P02	PD_08	R05	PG_08	Y15	VDD_DMC	F08
PA_09	N03	PD_09	P05	PG_09	V12	VDD_DMC	F09
PA_10	M05	PD_10	R04	PG_10	T12	VDD_DMC	F10
PA_11	V07	PD_11	W03	PG_11	B03	VDD_DMC	F11
PA_12	U08	PD_12	W04	PG_12	A02	VDD_DMC	F12
PA_13	Y05	PD_13	Y07	PG_13	B01	VDD_DMC	F13
PA_14	V06	PD_14	W06	PG_14	C02	VDD_DMC	F14
PA_15	T09	PD_15	Y06	PG_15	D03	VDD_EXT	H07
PB_00	A19	PE_00	W07	PH_00	E04	VDD_EXT	H09
PB_01	E17	PE_01	U09	PH_01	F05	VDD_EXT	H11
PB_02	F16	PE_02	V08	PH_02	G05	VDD_EXT	H13
PB_03	D05	PE_03	W08	PH_03	K03	VDD_EXT	H14
PB_04	E06	PE_04	W09	PH_04	F02	VDD_EXT	K07
PB_05	C04	PE_05	V10	PH_05	H02	VDD_EXT	K14
PB_06	V04	PE_06	U10	PH_06	K04	VDD_EXT	M07
PB_07	Y03	PE_07	W12	PH_07	K05	VDD_EXT	M14
PB_08	Y02	PE_08	V09	PH_08	F01	VDD_EXT	N07
PB_09	Y04	PE_09	W10	PH_09	H03	VDD_EXT	N14
PB_10	U05	PE_10	F20	PH_10	G03	VDD_INT	G06
PB_11	U06	PE_11	G19	PH_11	F03	VDD_INT	G12
PB_12	V05	PE_12	H18	PH_12	J03	VDD_INT	G13
PB_13	W05	PE_13	J17	PH_13	J04	VDD_INT	G14
PB_14	W17	PE_14	K16	PH_14	H04	VDD_INT	H06
PB_15	V20	PE_15	G18	PH_15	G04	VDD_INT	H08
PC_00	W20	PF_00	F19	PI_00	J05	VDD_INT	H10
PC_01	V19	PF_01	F18	PI_01	D01	VDD_INT	H12
PC_02	V17	PF_02	E20	PI_02	F04	VDD_INT	H15
PC_03	U16	PF_03	E19	PI_03	E03	VDD_INT	K06
PC_04	U18	PF_04	H17	PI_04	D02	VDD_INT	K10
PC_05	P16	PF_05	J16	PI_05	C01	VDD_INT	K11
PC_06	R16	PF_06	G17	PI_06	H05	VDD_INT	K12
PC_07	T17	PF_07	D20	SYS_BMODE0	L01	VDD_INT	K13
PC_08	M04	PF_08	D19	SYS_BMODE1	G02	VDD_INT	K15
PC_09	R02	PF_09	C20	SYS_BMODE2	N01	VDD_INT	M06
PC_10	U01	PF_10	E18	SYS_CLKIN0	J01	VDD_INT	M10
PC_11	N04	PF_11	F17	SYS_CLKIN1	E02	VDD_INT	M11
PC_12	P03	PF_12	H16	SYS_CLKOUT	J02	VDD_INT	M12
PC_13	T02	PF_13	B20	SYSFAULT	D18	VDD_INT	M13
PC_14	V01	PF_14	C19	SYSFAULT	G16	VDD_INT	M15
PC_15	N05	PF_15	T10	SYS_HWRST	D06	VDD_INT	N06

ADSP-SC596/ADSP-SC598

Pin Name	Ball No.
VDD_INT	N15
VDD_INT	P06
VDD_INT	P15
VDD_INT	R07
VDD_INT	R08
VDD_INT	R09
VDD_INT	R10
VDD_INT	R11
VDD_INT	R12
VDD_INT	R13
VDD_INT	R14
VDD_INT	T06
VDD_INT	T07
VDD_INT	T14
VDD_INT	T15
VDD_INT	U07
VDD_INT	U15
VDD_PLL	K08
VDD_PLL	K09
VDD_PLL	M08
VDD_PLL	M09
VDD_REF	P10
VDD_REF	P11
VDD_REF	P12

CONFIGURATION OF THE ADSP-SC596/ADSP-SC598 400-BALL BGA_ED

Figure 97 shows an overview of signal placement on the ADSP-SC596/ADSP-SC598 400-ball BGA_ED.

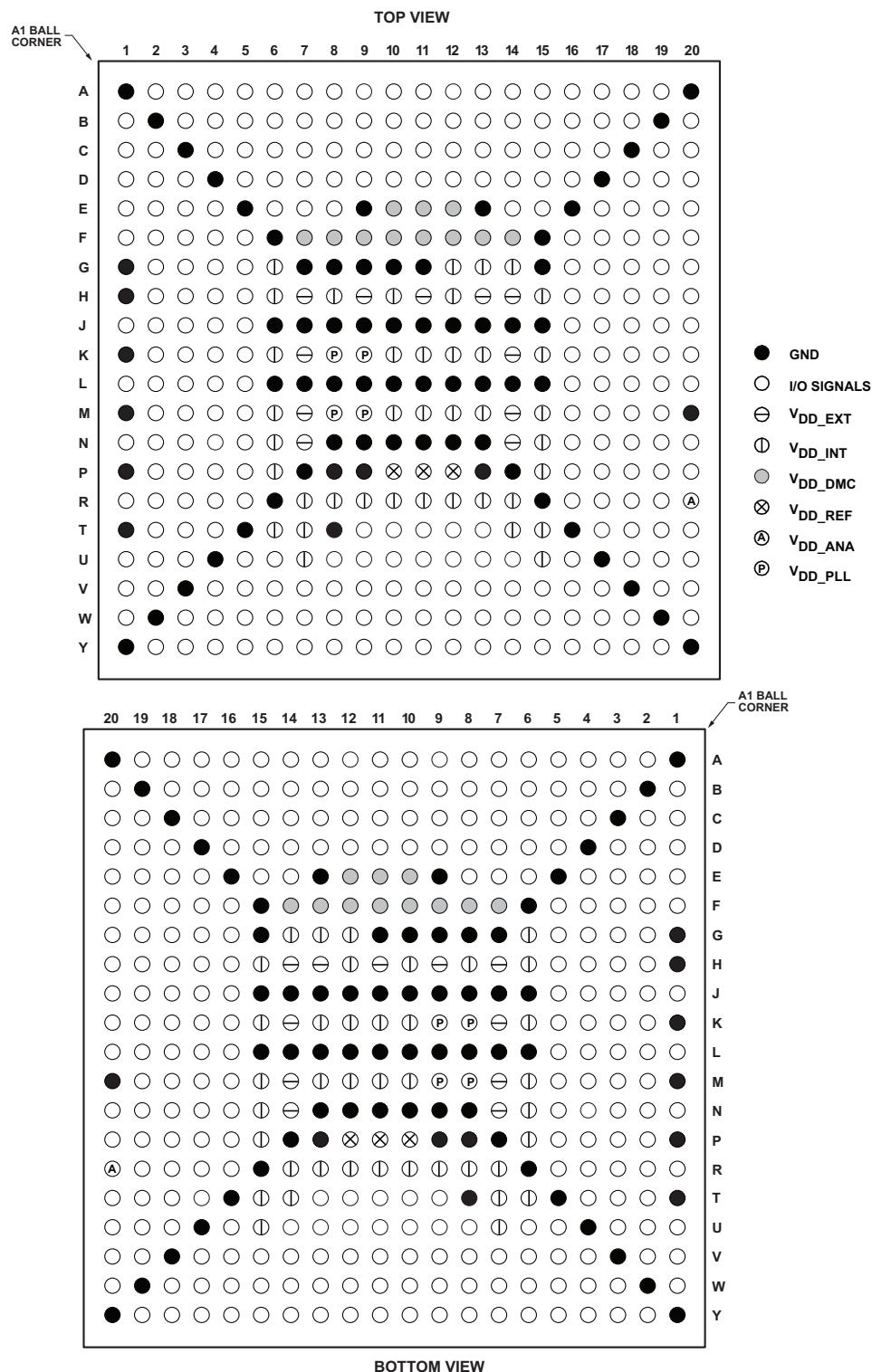


Figure 97. 400-Ball BGA_ED Configuration

ADSP-SC596/ADSP-SC598

OUTLINE DIMENSIONS

Dimensions for the 17 mm × 17 mm 400-ball BGA_ED package in [Figure 98](#) are shown in millimeters.

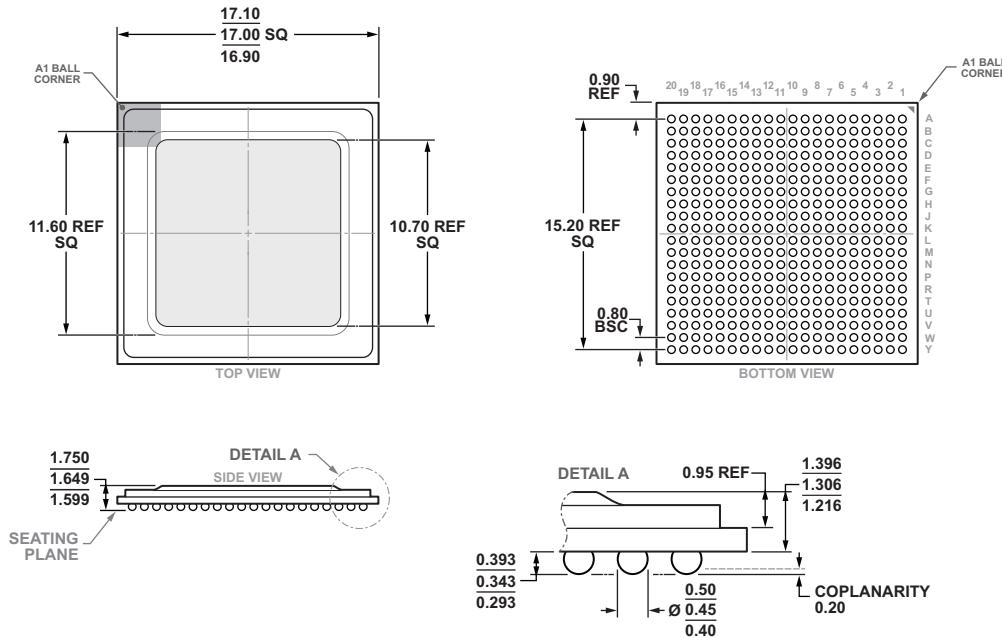


Figure 98. 400-Ball Chip Scale Package Ball Grid Array, Thermally Enhanced [BGA_ED]
(BP-400-3)
Dimensions shown in millimeters

SURFACE-MOUNT DESIGN

[Table 88](#) is provided as an aid to PCB design. For industry-standard design recommendations, refer to [IPC-7351, Generic Requirements for Surface-Mount Design and Land Pattern Standard](#).

Table 88. BGA Data for Use with Surface-Mount Design

Package	Package Ball Attach Type	Package Solder Mask Opening	Package Ball Pad Size
BP-400-3	Solder Mask Defined	0.4 mm Diameter	0.5 mm Diameter

AUTOMOTIVE PRODUCTS

The following models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the nonautomotive models; therefore designers should review the [Specifications](#) section of this data sheet carefully. Only the automotive grade

products shown in [Table 89](#) are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

Table 89. Automotive Products

Model ^{1, 2}	Processor Instruction Rate (Max)	Arm Instruction Rate (Max)	Temperature Range ³	L2 SRAM	Arm Cores	SHARC+ Cores	Package Description	Package Option
ADSP-SC598WCBPZ10	1000 MHz	1200 MHz	-40°C to +125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3
ADSPSC598WCBPZ10RL	1000 MHz	1200 MHz	-40°C to +125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3

¹Z =RoHS compliant part.

²RL = Supplied on Tape and Reel.

³Referenced temperature is junction temperature. See [Operating Conditions](#) for junction temperature (T_j) specification.

PLANNED AUTOMOTIVE PRODUCTION PRODUCTS

Model ^{1, 2}	Processor Instruction Rate (Max)	Arm Instruction Rate (Max)	Temperature Range ³	L2 SRAM	Arm Cores	SHARC+ Cores	Package Description	Package Option
ADSP-SC596WCBPZ10	1000 MHz	1200 MHz	-40°C to +125°C	2 MB	1	1	400-Ball BGA_ED	BP-400-3
ADSPSC596WCBPZ10RL	1000 MHz	1200 MHz	-40°C to +125°C	2 MB	1	1	400-Ball BGA_ED	BP-400-3
ADSP-SC598WCBPZ8	812.5 MHz	1200 MHz	-40°C to +125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3
ADSP-SC598WCBPZ8RL	812.5 MHz	1200 MHz	-40°C to +125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3

¹Z =RoHS compliant part.

²RL = Supplied on Tape and Reel.

³Referenced temperature is junction temperature. See [Operating Conditions](#) for junction temperature (T_j) specification.

PLANNED PRODUCTION PRODUCTS

Model ¹	Processor Instruction Rate (Max)	Arm Instruction Rate (Max)	Temperature Range ²	L2 SRAM	Arm Cores	SHARC+ Cores	Package Description	Package Option
ADSP-SC596BBPZ10	1000 MHz	1200 MHz	-40°C to +125°C	2 MB	1	1	400-Ball BGA_ED	BP-400-3
ADSP-SC596KBPZ10	1000 MHz	1200 MHz	0°C to 125°C	2 MB	1	1	400-Ball BGA_ED	BP-400-3
ADSP-SC598BBPZ8	812.5 MHz	1200 MHz	-40°C to +125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3
ADSP-SC598BBPZ10	1000 MHz	1200 MHz	-40°C to +125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3
ADSP-SC598KBPZ8	812.5 MHz	1200 MHz	0°C to 125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3
ADSP-SC598KBPZ10	1000 MHz	1200 MHz	0°C to 125°C	2 MB	1	2	400-Ball BGA_ED	BP-400-3

¹Z =RoHS compliant part.

²Referenced temperature is junction temperature. See [Operating Conditions](#) for junction temperature (T_j) specification.

¹I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).