‘,—l UM2719
life.augmented

User manual

AVAS architecture based on AutoDevKit

Introduction

The AutoDevKit Acoustic Vehicle Alerting System (AVAS) consists of an AEK-MCU-C1MLIT1 Discovery board, an AEK-AUD-
D903V 1 evaluation board, and appropriate speakers. The AEK-MCU-C1MLIT1 board MCU monitors and controls the FDA903D
power amplifier on the AEK-AUD-D903V1 board via I?°C and I?S serial interfaces and GPIOs.

The MCU board and the audio board can be wired together directly or via a connector board designed to simplify the process.

The AEK-MCU-C1MLIT1 board is supplied 5 V through its mini-USB connector, while the AEK-AUD-D903V1 can either be
supplied low voltage (from 3.3 V to 18 V) or standard voltage (from 5 V to 18 V).

Figure 1. AVAS system AutoDevKit control board and audio board

I2C SCL
I2C SDA
8 12S scL
ﬁ
12S WS
ﬁ
I2S SDA
12S CR
NABLE1
ENABLE2
ﬁ
ENABLE3
ENABLE4

MUTE

The hardware is fully supported by a software ecosystem, which includes SPC5-STUDIO development environment, SPC5-
UDESTK-SW software for debugging and STSW-AUTODEVKIT Eclipse plugin containing AEK-AUD-D903V1 driver and sample
application codes.

UM2719 - Rev 1 - May 2020

For further information contact your local STMicroelectronics sales office.

https://www.st.com/autodevkit
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/autodevkitsw
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

m UM2719

AVAS system hardware

1 AVAS system hardware

Figure 2. AVAS Demo hardware and connections

128 SCL 2sscL 4
12S WS 128 wWs 4
12§ SDA 128 DATA 4
125 CR
GND GND
12¢ scL 2cscL @
|2cscL ¢ 12C SDA 12cspa ¢
GND
2C.SOR 4 CDDIAG
GND e = VBAT ‘
EN1 ENABLE 1
ki G ¥ B R cvee
12S DATA b Ve . .20 EN3 ENABLE 3 4
2swWs p 4 - . ENY ENABLE 4
ENABLE 1) HW MUTE
ENABLE 2p
ENABLE 3p
ENABLE 4}
HW MUTE p

Analog pin SARADC ISEEE R

CN11

UM2719 - Rev 1 page 2/59

‘,_l UM2719

AEK-MCU-C1MLIT1 Discovery board audio support

2 AEK-MCU-C1MLIT1 Discovery board audio support

The AEK-MCU-C1MLIT1 Discovery evaluation board features the SPC582B60E1 automotive microcontroller with
high performance €200z2 single core 32-bit CPU with 80MHz clock, 1088 KB Flash and 96 KB SRAM in an
eTQFP64 package. The I?S (simulated by an SPI port), I>)C port and GPIOs provide the necessary signal and
communication lines to control a class D power amplifier.

The board also integrates a programmer/debugger interface based on the UDE PLS software, allowing the user to
program the microcontroller and debug software applications. The integrated debugger software is available
through ST's free integrated development environment, SPC5-STUDIO. To download the debugger software and
to activate the license, refer to the PLS website.

Note: Arduino connectors are not mounted on this board and are not required for the audio application.

Figure 3. AEK-MCU-C1MLIT1 Discovery board components

. PLS programmer/debugger

. USB power connector to supply 5V and load firmware

. User interface with three LEDs and two buttons

. 32-bit SPC582B60E1 MCU

. CN10 19x2 connector for access to I2C and I2S ports and GPIOs

. CN7 11x2 connector for access to I12S ports and GPIOs

. CN6 connector allows supplying the board with different external voltage (3.3 V, 5V or 12 V)

~NOoO O WON =

P -

-
| |
[|
|
|
| |
u
| |
|
| |
|
| |
N
|}
-

[
1
1
[}
[}
[}
AL
1
L
]

The SPC582B60E1 microcontroller includes the following additional features:

. 1088 KB (1024 KB code flash + 64 KB data flash) on-chip flash memory: supports read during program and
erase operations, and multiple blocks allowing EEPROM emulation

. Comprehensive new generation ASIL-B safety concept:
— ASIL-B of ISO 26262 — FCCU for collection and reaction to failure notifications
— Memory Error Management Unit (MEMU) for collection and reporting of error events in memories.

UM2719 - Rev 1 page 3/59

https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

m UM2719

IS bus interface on the SPC582B60E1 microcontroller

. 1 enhanced 12-bit SAR analog-to-digital converter:
- Up to 27 channels (two channels are used in the AVAS application for sound volume and acceleration)
— enhanced diagnostic feature.

. I2C interface
. 4 serial peripheral interface (DSPI) modules (a DSPI is used in the AVAS Demo to simulate the I?S bus
interface).
21 IS bus interface on the SPC582B60E1 microcontroller

The FDA903D audio amp receives the audio signal from the flash blocks of the SPC582B60E1 via the I?S bus.
This interface can transmit two different audio channels on the same data line. As SPC5 microcontrollers do not
have a native I?S interface, an emulation through the DSPI protocol is implemented.

211 I2S protocol details

The I2S bus consists of the following lines:

12S SCL The clock signal frequency is the product of the sampling frequency and the number of bits
transmitted.

12S DATA The transmitted data are coded in two's complement, and the MSB (Most Significant Bit) is
therefore in the first position of each word. The data word is composed of 32 bits.
Note: The device only processes the first 24 most significant bits and disregards the least significant 8 bits.
12S WS The Word Select signal is synchronized with the sampling frequency. Its digital value identifies
the transmission channel (0 = right channel, 1 = left channel).
21.2 I12S emulation on DSPI for SPC5 MCU control of FDA903D amplifier
The FDA903D power amplifier allows audio playback at the following sampling frequencies:
. 44 1 kHz
. 48 kHz
. 96 kHz
. 192 kHz

The maximum DSPI clock limit can only support the lowest frequency (fs = 44.1 kHz).

DSPI is a synchronous serial communication interface primarily used for short-distance communication in
embedded systems. This interface is based on four signals:

SCLK: the serial clock signal from the master (the microcontroller in our application)
MOSI: the serial data from the master to the slave (the FDA903D in our case)
MISO: the serial data from the slave to the master

Cs: selects which slave chip receives the message from the master

DSPI emulation of the I?S interface is therefore obtained through the following associations and parameter values:
. I12S DATA — DSPI MOSI
— 32-bit data word
. 12S WS — DSPI CS
— varies the channel (right or left) according to the fg (sampling frequency).
. I12S SCLK — DPSI SCLK

— Frequency = numberofchannels X numberofbitsinaword X sampling frequency = 2x32x44.1kHz
= 2.822MHz.

UM2719 - Rev 1 page 4/59

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘,_l UM2719

I12S bus interface on the SPC582B60E1 microcontroller

. 12S TEST — DSPI MISO

— This additional signal allows the FDA903D to send real-time current sensing information to the
microcontroller and to a DSP for sound processing.

Figure 4. Standard I?S data format
1/fs

| 1/(64 xfs)

AAF_____ AARA_____ AAAAL =

1/ (2 xfs) 1/(2xfs) [2Sws

X Left channel

Right channel X I2Sdata

. MCU DSPIO port access via four CN10 connector pins
. MCU has four DSPI ports

Figure 5. Connector CN10 pins for DSPIO

S
(]

un

[

hifSetteetes

2

S
PC2 PC1 GND 5V

== Sen
o= L R115

"“;#.a;‘ I

Car fem] . 104 SSCUDS o

°Z &> 125 SCL
152 Gt D)., PAMAMOS011 @ :gg (S:EA
12S WS

HEHL !l!

LA

u
:Iz RoH Wi @
b 5 zoalls'ls‘nug i@ £© O&

X ® R ® ¥ T ORD

UM2719 - Rev 1 page 5/59

‘,_l UM2719

I12C bus interface on the SPC582B60E1 microcontroller

RELATED LINKS

Refer to TN1296: "IS emulation on DSPI" for more information about emulating the I°S protocol

2.2 I2C bus interface on the SPC582B60E1 microcontroller

The I2C interface is used to control, program and request information from the audio amp. Data transmission from
SPC582B60E1 to the FDA903D and vice versa takes place through the two-wire I2C bus interface for the SDA

and SCL lines.
Note: According to the I?C protocol, it is mandatory to insert pull-up resistors to positive supply voltage on the SDA and
SCL lines.
Figure 6. I*C typical data format
[S] Start bit

Chip address byte
Sub-address byte
[data] n-byte + Acknowledge bit

[P] Stop bit
S Address A Subaddress A Data P
Address =] ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR
Subaddrs |=] SUBA SUB A SUB A SUB A SUB A SUB A SUB A SUB A
Data =] DATA DATA DATA DATA DATA DATA DATA DATA

The AEK-MCU-C1MLIT1 provides I?C port access through two pins on the CN10 connector shown in the figure
below.

The discovery board has a single dedicated I>C port. Additional ports can be added by emulating the I12C protocol
via software to configure a GPIO pin for I2C SCL and another pin for [?°C SDA.

UM2719 - Rev 1 page 6/59

https://www.st.com/content/ccc/resource/technical/document/technical_note/group0/bb/cc/fb/56/6a/6c/4f/51/DM00633235/files/DM00633235.pdf/jcr:content/translations/en.DM00633235.pdf
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘_, T UM2719
I12C bus interface on the SPC582B60E1 microcontroller

Figure 7. Connector CN10 pins dedicated to I’C

Emllci1s
o
=
it}
15

LEE
00
Lol

17 Eui)103

8
@i
5
. 3
-]

2
T, >

r;;m. 25

'5'5““

o
=]

5 @)~ RI
104 =) ﬁmiga B’EE
ut b

| 'ﬂ‘ &t

€105 RO 0103

L U108 s

] £ 13
— RBAARERRRARARARY - n o E«r%ts
[T - —

s{iifiiiiit @

Y

2

}au

S]
=

PC2 PC1 GND 5V

e
]

Tearfeg U4 SRS ol o A 5 12¢ scL
i UL : y &> 12C SDA

mz[RoHS
“1A2 | | Seezsec
JAZ
L]
A4

JJAS

' @
@ | AutoDevKit

page 7/59

UM2719 - Rev 1

‘,_l UM2719

AEK-AUD-D903V1 evaluation board for automotive power amplifier

3 AEK-AUD-D903V1 evaluation board for automotive power amplifier

The AEK-AUD-D903V1 is designed to allow evaluation and application development based on the embedded
FDA903D automotive digital class D power amplifier in a PowerSSO-36 slug-down package.

Figure 8. AEK-AUD-D903V1 main components and interfaces

1. Output channel; 2. FDA903D power amplifier; 3. Power supply connector

4. Enable and HW mute pins: [EN1 to EN4]: 4 pins can be configured to switch on the amplifier and assign it on of 7 possible an
I12C addresses, [MUTE]: allows MUTE setting control of the power amplifier through a GP1O

5. I2C interface: [I2C SCL]: 12C clock line, [I2C SDA]: 12C data line

6. I2S interface: [I2S SCLJ: 128 clock line, [12S WS]: I12S Word select line, [1I2S SDA]: digital input, [I2S CR]: 12S Output test
current, [GND]

1-‘._

>
-3
g

SVIGGE
RS =1
Yas sél g
smszl o
—. Jossz)

The FDA903D power amplifier can be configured through its I?C bus interface and the device includes the
following diagnostics suite designed for automotive applications:

. open load in play detection

. DC Diagnostic in MUTE to monitor the load status
. short to Ve / GND diagnostic

. digital Input Offset detection

. output Voltage Offset detection

. output Current Offset detection

. thermal protection

The FDA903D features a configurable power limiting function and can be optionally operated in legacy mode
without I1°C communication.

3.1 FDA903D finite state machine

The FDA903D finite state machine (FSM) describes how the device reacts to system and user inputs.

UM2719 - Rev 1 page 8/59

https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘,_l N UM27‘_IQ

FDA903D finite state machine

Figure 9. FDA903D state machine

90ms Short to Vee/Gnd check

Enables set
AND

12C programmed for the first
Stand By prog time No short to Vce/Gnd
condition STABLE for at least
Diag Vce/Gnd 90ms
Short to VVee/Gnd present ECO-mode

Overcurrent protection 12C cmd:
OR “PWM OFFJ

Enables ="0000"

Vcc for system reset
OR
128 missed or not correct

Vee under UVLO present
Overvoltage OR 12C cmd:
J Thermal shutdown “PWM ON”

shutdown limit

12C cmd:
“Diag DC start”

Diagnostic DC end

12C cmd: "MUTE"
OR

Automatic mute

condition present

Vcc over Overvoltage
shutdown limit

The initial standby state of the device cannot be exited until the I1>C interface has been correctly enabled by
providing the correct supply voltage, the IS clock, the I2S data and a valid combination of enable pins in order to
determine the I12C device address.

Table 1. I?C device address combinations

Standby 0

Amplifier ON address 1 = 1110000’ 0 1 0 0
Amplifier ON address 2 = *1110001’ 1 1 0 0
Amplifier ON address 3 = 1110010’ 0 0 1 0
Amplifier ON address 4 = ‘1110011 0 1 1 0
Amplifier ON address 5 = ‘1110100’ 0 1 0 1
Amplifier ON address 6 = ‘1110101’ 1 1 0 1
Amplifier ON address 7 = “1110110’ 0 0 1 1
Amplifier ON address 8 = “1110111’ 0 1 1 1

UM2719 - Rev 1 page 9/59

‘,_l UM2719

FDA903D finite state machine

When a valid combination of Enable 1/2/3/4 is recognized, the device turns on all the internal supply voltages and
outputs are biased to V¢ / 2. The internal I?C registers are preset in the default condition until the I1?C next
instruction. A return to the Standby condition (all the enable pins set to 0) resets of the amplifier. The finite state
machine shows that a reset is also triggered if PLL is not locked, I?S is missing or not correct, or V¢ is removed.

There are also four possible legacy mode combinations for device operation without using the I1>C interface.

Table 2. Legacy mode Enable configurations

1 1 1 0

Legacy mode: low voltage mode; in-phase

Legacy mode: low voltage mode; out-phase 1 1 1 1
Legacy mode: standard voltage mode; in-phase 1 0 0 0
Legacy mode: standard voltage mode; out-phase 1 0 0 1

Note: FDA903D can only work in I?C slave mode; any combination other than those indicated are invalid.

311 FDA903D FSM state descriptions

Standby The ENABLEX pins set the I°C addresses and start up the system; if ENABLE1/2/3/4 are all low

("0000"), then the FDA903D is off, the outputs remain biased to ground and the current
consumption is limited.

Diagnostic Vcc-Gnd This state checks the device is in a safe operating condition, with no short to ground (Gnd),
short to V¢, overcurrent, undervoltage (UVLOyc), or thermal shutdown. The FDA903D moves
to the next Eco-mode if none of these faults occur for at least 90 ms. A stable fault is
communicated to the user via I°C messages after 90 ms. While in Diagnostic Vcc-Gnd state,
FDA903D can receive all the I>C commands but will not turn the PWM on.

ECO-mode The amplifier is fully operational and can receive and execute any valid command. Output
switching is disabled for low power consumption. The device can move from ECO-mode to the
MUTE state in order to activate switching within about 1 ms and without experiencing POP-
noise. This facilitates fast transition from ECO-mode to PLAY.

MUTE The FSM transitions from ECO-mode to the MUTE state through the 1°C command to turn on
PWM. The MUTE state allows quick transition to PLAY and diagnostic states.

PLAY The FSM transitions to this state from MUTE via the I2C “PLAY” command, and the same status
register bit governs the return from PLAY back to MUTE. Certain external conditions such as
low battery mute, high battery mute, hardware mute pin and thermal mute automatically return
the amplifier to the MUTE state.

Diag DC This state starts the DC diagnostic routine to detect the load connection status and returns to
the MUTE state when the routine has finished.

Note: I?C commands performed by the user are executed via the I°C protocol by modifying the device register settings.

RELATED LINKS

Refer to the FAD903 datasheet for more information regarding its state machine

UM2719 - Rev 1 page 10/59

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/resource/en/datasheet/fda903d.pdf

‘_ UM2719
,l FDA903D I?S protocol

3.2 FDA903D I*S protocol

Audio data is transmitted to the power amplifier via the I2S protocol. The 32-bit data word is in two's complement
representation starting from the MSB. The device only processes the first 24 most significant bits and disregards

the 8 least significant bits.

Note: Besides the standard I?S used in our demo, the FDA903D device also supports Time Division Multiplexing mode
(TDM).
The FDA903D internal PLL locks on the I?S clock line signal frequency, which is why it is important to configure
the IS bus appropriately. When the I2S clock is missing or corrupted, the PLL unlocks and the device is forced

into a standby state.

Figure 10. I*S (DSPI) connection in AEK-AUD-D903V1

B

AutoDevKit

125 scL 8 12S CLOCK LINE
125 WS I2S WS LINE
125 SDA 12S DATA LINE

128 CR 12S CURRENT TEST

GND
12C SCL
12C SDA

GND
CDDIAG

VBAT

EN 1

EN 2

EN 3

EN 4

MUTE

—
~
™
o
|2
(=
|
T
4
L
a
-

3.3 FDA903D I*C protocol

The DATA and SCLK wires for the I12C protocol are used to communicate, control and manage the FDA903D.
Connection between the I2C microcontroller port and I1°C power amplifier pins on the AEK-AUD-D903V1 is
provided by the pins on the connector shown below.

UM2719 - Rev 1 page 11/59

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘,_l UM2719

FDA903D I*C protocol

Figure 11. I’C connection in AEK-AUD-D903V1

o

AutoDeviit

125 SCL
125 WS
125 SDA

12S CR
GND
12C SCL 12C CLOCK LINE
12C SDA 12C DATA LINE
GND
CDDIAG
VBAT
EN 1
EN 2
EN 3
EN 4

MUTE
GND
N

-
-
™
(-
o)
l%'l
o
-
?
b4
L
a
-

The power amplifier FDA903D is controlled with appropriate read and write operations on Instruction Bytes
registers (from IBO to IB14) performed with the 12C protocol. Additional Data Bytes registers (from DBO to DB6) in
the device record the state of the amplifier.

Writing to the instruction registers and reading from the device status registers are the fundamental elements of
device management.

3.31 I12C protocol writing procedure
Communication through the I?C protocol takes place via a well-defined sequence of bit packages: start bit —
recipient address — acknowledge bit — sub-address — acknowledge bit — actual data — stop bit.

The amplifier address is chosen from eight possible enable pins combinations that represent eight corresponding
addresses. For example, to assign I°C address1 = “1110000” to the device, enable pin 2 is set high (Enable 2 =
“1”) and enable pins 1,3 and 4 are set low (Enable1 = “0”, Enable3 = “0”, Enable4 = “0”).

Table 3. I?)C address 1 selection

0 0 0

Standby 0

Amplifier ON address 1 = “1110000’ 0 1 0 0
Amplifier ON address 2 = 1110001’ 1 1 0 0
Amplifier ON address 3 = 1110010’ 0 0 1 0
Amplifier ON address 4 = “1110011’ 0 1 1 0
Amplifier ON address 5 = 1110100’ 0 1 0 1

UM2719 - Rev 1 page 12/59

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘,_l UM2719

FDA903D I*C protocol

1 1 0 1

Amplifier ON address 6 = 1110101’
Amplifier ON address 7 = “1110110’ 0 0 1 1
Amplifier ON address 8 = ‘1110111’ 0 1 1 1

The connector on the AEK-AUD-D903V1 provide access to the four enable pins by four corresponding GPIO pins
on the microcontroller.

Figure 12. ENABLE pin locations on the connector

125 SCL
125 WS
125 SDA

128 CR
GND
12C SCL
12C SDA
GND
CDDIAG
VBAT
EN 1 ENABLE 1
ENABLE 2
ENABLE 3
ENABLE 4

The subaddress is assigned according to the IB register to be written, as shown in the following table.

Table 4. Subaddress association

IBO 10000001
IB1 10000010
B2 10000011
IB3 10000100

UM2719 - Rev 1 page 13/59

https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘W UM2719

FDA903D I*C protocol

B4 10000101
IB5 10000110
IB6 10000111
IB7 10001000
B8 10001001
I1B9 10001010
1B10 10001011
1B11 10001100
1B12 10001101
1B13 10001110
1B14 10001111

In the above table, bit 7 of the subaddress is the letter “I” to represent the possibility of having an incremental
writing procedure. If the “I” bit is set to 1, the write operation is performed from the corresponding register and all
consecutive ones with a unique flow of data from I2C. The process can involve all registers or can be interrupted
by a stop bit received from I?C.

The data bits carry the actual information required to control the power amplifier.

3.3.2 I>C protocol: reading procedure
The reading procedure consists of the device address (sent by master) and the data (sent by slave).

Figure 13. Read operation packet
0 I Y B

When a reading procedure is performed, the first register read is the last addressed in a previous access to I1>C
peripheral. Hence, the reading of a register is enabled by a write action (a write interrupted after the sub-address
is sent) to specify which register must be read. The following figure shows the complete procedure to read a
specific register where:

1. The master performs a write action by sending only the device address and the subaddress; the
transmission must be interrupted with the stop condition after the subaddress.

2. The master starts a new communication by sending the device address and the FDA903D slave responds
by sending the data bits.

3. Theread communication is ended by the master which sends a stop condition preceded by a not-
acknowledge.

Figure 14. Read operation required data

5 Address EIA. Subaddress AlP|S Address EIA_IP

Alternatively, performing a start immediately after the stop condition can be used to generate the repeated start
condition (Sr), which also keeps busy the I>C bus until the stop is reached.

Figure 15. Read operation with repeated start condition

5 Address HMIA. Subaddress | A |Sr Address m-.IA_EP

UM2719 - Rev 1 page 14/59

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘W UM2719

FDA903D I*C protocol

3.33 IB registers in I1°C

The microcontroller accesses all amplifier functionality through the IB registers.

Table 5. IB register map

IB register map

D7 D6 D5 D4 D3 D2 D1 DO

IBO D7: enable/disable writing on IB registers
D6-D5: enable/disable the IS standard protocol for transmitting the digital input
D4-D1: choose between right or left channel

DO: select between low voltage and standard voltage modes

1B1 D7-D6: select the I)'S WS
D4-D3: select the PWM switching frequency based on the 1S WS value
D2: select between PWM amplifier dithered or not dithered
DO: select between PWM in phase or out of phase

IB2 D7-D6: establish the short to supply diagnostic timing
D4: activate/deactivate the low radiation function

D3-D0: enable and configure the amplifier power limiter

IB3 D5: enable/disable output voltage offset detector
D4: enable/disable input offset detector
D3: enable/disable output current offset detector
D2: enable/disable high pass filter in DAC amplifier DAC
D1: enable/disable noise gating

DO: enable/disable open load in play detection

IB4 D7: enable CDDIAG to report presence of output voltage offset
D6-D4: enable CDDIAG to report temperature warnings
D3: enable CDDIAG to report overcurrent faults
D2: enable CDDIAG to report input offset
D1: enable CDDIAG to report short to V¢ or to Gnd fault
DO0: enable CDDIAG to report high voltage Mute fault

IB5 D7: enable CDDIAG to report undervoltage fault
D6: enable CDDIAG to report thermal shutdown fault
D5-4: enable CDDIAG to report PWM pulse skipping

IB6 D7-D6: establish MUTE timing setup
D5: select audio signal gain control

D4: choose between standard gain or low gain

UM2719 - Rev 1 page 15/59

‘W UM2719

FDA903D I*C protocol

IB7 D7-D6: select the diagnostic ramp time
D5-D4: select the diagnostic hold time
D1: choose between data generated on I2S clock falling edge or rising edge

DO: select the current sensing protocol configuration

IB8 D7-D6: set the full current sensing scale
D5: turn on/off the PWM
D4: enable the DC Diagnostic
D3-D1: configure the I12S CR pin
DO: put the amplifier in MUTE/PLAY

IB9 D4: enable/disable the watchdog for word select management

IB10 D7: set short load impedance threshold for DC diagnostic
D6: set open load impedance threshold for DC diagnostic and open load in play

D4-D3: configure the output current offset detector threshold

1B11 D5-D4: select the overcurrent protection level
D3: select between default PWM or PWM Slow slope

IB12 D7: select between standard thermal warning or thermal warning shift - 15 °C

IB13 D6: select whether digital mute is enabled or disabled in PLAY when Start Analog Mute without
thermal warnings occurs

IB14: D4: set feedback on LC filter/Out
D3-D1: configure the LC filter setup
DO: select whether or not setup is programmed via 12C

3.34 DB registers in I’C

DB registers allow the microcontroller to monitor the status and operation of the power amplifier.

Table 6. DB register map

DB register map

D7 D6 D5 D4 D3 D2 D1 DO

DBO D7: indicates whether an offset at input is present
D6: indicates whether the current offset test has ended and if it is valid
D5: indicates whether an offset at current offset is present
D3: indicates whether an offset at voltage offset is present
D2: indicates whether the open load in play test has ended
D1: indicates whether the open load in play test is valid

Do: indicates whether an open load is present or not

UM2719 - Rev 1 page 16/59

m UM2719

Potentiometers

DB1 D7-D4: indicates whether the thermal warning is active
D3: indicates whether the PLL is locked
D2: indicates whether an undervoltage UVLOALL has been detected
D1: indicates whether an overvoltage shutdown has been detected

DO: indicates whether PWM pulse skipping has been detected

DB2 D7: indicates whether the DC diagnostic pulse has ended
D6: indicates whether the DC diagnostic is valid
D5: indicates whether the overcurrent protection has been activated
D4: indicates when a short load on channel occurs
D3: indicates when a short to V¢ on channel occurs
D2: indicates when a short to Gnd on channel occurs
D1: indicates when an open load on channel occurs
DO: indicates whether the channel is in MUTE or in PLAY

DB3 Reserved for DC Diagnostic Error codes

DB4 Register is reserved for Channel Current Sensing (10 - 8)
DB5 Register is reserved for Channel Current Sensing (7 - 0)
DB6 D7: indicates whether the high voltage mute has started

D6: indicates whether an undervoltage UVLOV ¢ has been detected
D5: indicates whether a thermal shutdown has been detected

D4: indicates whether the analog mute is started

D2: indicates whether the watchdog for word select occurs

D1: indicates whether an error frame occurs

3.35 Driver

A driver has been developed to allow the user to monitor and control the amplifier without engaging in tedious IB
and DB register read and write operations associated with a task.

3.4 Potentiometers

The AVAS system includes two potentiometers to help simulate the sound of a car engine: one to simulate the
accelerator pedal and another to adjust the sound volume. The potentiometers are powered through two supply
voltages (5V and 3.3V) from the AEK-MCU-C1MLIT1 control board via female connector CN6 or male connector
CN7.

Our system uses the potentiometer as a voltage divider to obtain a manually adjustable output voltage from a
fixed input voltage applied across the two ends of the potentiometer. It is formed by an insulating cylinder on
which a metal wire is wound, and the two ends are connected to two terminals. One of these terminals is
connected to a sliding contact that runs the length of the cylinder. The operation is equivalent to a pair of resistors
in series whose total value is constant, but individually variable according to the position of the sliding contact.

UM2719 - Rev 1 page 17/59

https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://en.wikipedia.org/wiki/Voltage_divider

m UM2719

Successive approximation analog-to-digital converter (SARADC)

Figure 16. Linear potentiometer circuit

R, =R, +R,,

Considering R an open, we have the voltage on Rty equal to the power supply voltage of the potentiometer
R
multiplied by RLTZ, and since this ratio is equal to that of Lo (Rt2 resistor length) on Lt (total resistor length), we

see that the output voltage of the potentiometer is a function of the cursor position.
V*Lrp
Vy = Ir

It is possible to implement speed and volume control by directly relating these variables to the output voltage of a
potentiometer. The analog output of the potentiometers are converted into discrete values by the SPC582B60E1
microcontroller ADCs.

(1)

3.5 Successive approximation analog-to-digital converter (SARADC)

Two of the 27 SARADC channels on the AEK-MCU-C1MLIT1 control board microcontroller are used to convert
the potentiometer speed and volume signals into digital quantities through the connector CN7.

Note: These signals can also be routed through CN11.

Figure 17. Potentiometer connections

POT 1 VOLUME

3.3V

GND
Analog pin SARADC
Vcec

3.6 Stereo mode

In order to produce stereo audio, the system requires a second AEK-AUD-D903V1 board to occupy both the left
and right channels available on the I12S DATA line.

UM2719 - Rev 1 page 18/59

https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

m UM2719

Stereo mode

Figure 18. AVAS system for two stereo sound

CONNECTIONS COMING FROM
FRONT CONNECTOR

ZsscL 4

zsws 4

125 DATA 4

903U

o B

GHD
2c scL
12C SDA

o] =
L =

|

-4
L

EMABLE 140
ENABLE 241
ENABLE 340
ENABLE &40
HW MUTE 4

125 DATA b

2SWS »

EMAELE 1 LOW STATE "0"
CONNECTIONS COMING
FROM BACK CONNECTOR

EMABLE 2p HIGH STATE "1
ENABLE 3FLOW STATE "0* 25 scL 4
IZEWS 4

EnasLE 45 LOW STATE "0" S 0ATAS

HW MUTE p s
izcscL #®
12€ SDA

CN11

The connection of a second audio board will involve the following modifications to the AVAS system:

. The I2C interface is shared, so the 12C SCL clock line and the 12C DATA line are connected to both AEK-
AUD-D903V1 audio boards.

. The I?S interface is also shared as the lines (12S SCLK, 12S WS and 12S DATA) are also used by the second
amp. The right channel and the left channel travel on the same line, and the 12S WS distinguishes the
information for the right channel and the left channel.

. The 1?)C communication between the microcontroller (master) and the two amplifiers (slaves) are
distinguished by the addresses that identify the two devices.

. The address that identifies each of the two amplifiers is obtained through a combination of the four enables,
so eight GPIOs are required in total.

This AEK-MCU-C1MLIT1 control board has a copy of the male CN7 and CN10 connectors on the back of the
board, which makes it relatively easy to split the connections for the 1°C and IS interfaces between the two amps.

UM2719 - Rev 1 page 19/59

https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

UM2719

,l Stereo mode

Figure 19. AEK-MCU-C1MLIT1 seen on both sides

BACK FRONT

Even though it would normally take eight GPIOs to assign addresses to the two amplifiers, we can use the copy of
the connectors on the back side of the control board to halve the number of GPIOs. To do this, we use two

combinations that have the same number of pins to put high ("1").

Table 7. Comparison of pin settings for addresses 1 and 3

0 1 0 0

Amplifier ON address 1 = 1110000’

Amplifier ON address 3 = ‘1110010’ 0 0 1 0

In the above example, where address 1 and address 3 have the same number of high and low pins, it is evident
that we can use the same GPIOs to create the two necessary combinations by connecting the GPIO high (“1”) to
Enable 2 of the first board and Enable 3 of the second board, and the three low GPIOs (“0”) to the remaining

three enable pins on each board.

UM2719 - Rev 1 page 20/59

m UM2719

AVAS system software

4 AVAS system software

The AVAS demo system requires the following set of software tools to develop and load the microcontroller
firmware to drive and monitor the power amplifier:

. SPC5-STUDIO and SPC5-UDESTK-SW debugger
. STSW-AUTODEVKIT
. AEK-AUD-D903V1 driver

RELATED LINKS
Refer to user manual UM2623 for more information regarding SPC5-STUDIO and STSW-AUTODEVKIT

4.1 SPC5-STUDIO

SPC5-STUDIO is an integrated development environment (IDE) based on Eclipse designed to assist the
development of embedded applications based on SPC5 Power Architecture 32-bit microcontrollers.

The package includes an application wizard to initiate projects with all the relevant components and key elements
required to generate the final application source code. It also contains straightforward software examples for each
MCU peripheral.

Other advantages of SPC5-STUDIO include:

. ability to integrate other software products from the standard Eclipse marketplace
. free license GCC GNU C Compiler component

. support for industry-standard compilers

. support for multi-core microcontrollers

. PinMap editor to facilitate MCU pin configuration

RELATED LINKS
Download the SPC5-UDESTK-SW software to run and debug applications created with SPC5-STUDIO

4.2 STSW-AUTODEVKIT

The STSW-AUTODEVKIT plug-in for Eclipse extends SPC5-STUDIO for automotive applications.
The main advantages of STSW-AUTODEVKIT are:

. integrated hardware and software components, component compatibility checking and MCU and peripheral
configuration tools

. allows creation of new system solutions from existing solutions by adding or removing compatible function
boards

. Hardware abstraction means new code can be generated immediately for any compatible MCU
. High-level application APIs to control the AEK-AUD-D903V1 board.

The GUI helps configure interfaces, including I2C and I?S, and can automatically manage all relevant pin
allocation and deallocation operations.

4.3 AEK-AUD-D903V1.c and sound.c drivers

The AEK-AUD-D903V1.c driver and sound.c library are provided with the STSW-AUTODEVKIT installation to
facilitate the programming phase.
431 AEK-AUD-D903V1.c driver

This driver contains the functions to configure the IB and DB registers of the FDA903D audio amplifier for
appropriate system management and control.

Consider the IB8 register below.

UM2719 - Rev 1 page 21/59

https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/autodevkitsw
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/3d/76/aa/a4/0b/5c/4b/a1/DM00643538/files/DM00643538.pdf/jcr:content/translations/en.DM00643538.pdf
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw
https://www.st.com/en/product/stsw-autodevkit?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/autodevkitsw
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

‘,_l UM2719

AEK-AUD-D903V1.c and sound.c drivers

Table 8. FDA903D IB8 register description

Definition
Data bit Default value

Current Sensing Full scale setting:

0 1 A lmax
D7-D6 1 1 2 A lmax
10 4 A lmax
1 8 A lmax
0 Channel in TRISTATE (PWM OFF)
P ° 1 Channel with PWM ON
0 Channel DC Diag disable
D4 0
1 Channel DC Diag start
I2S test pin configuration
000 High impedance configuration
001 Reserved
010 Reserved
D3-D1 000 011 Output: Current sensing enable
100 Reserved
101 Output: PWM synchronization signal
110 Reserved
1M Reserved
0 Channel in MUTE
DO 0
1 Channel in PLAY

To put the amplifier in PLAY mode, we need to configure the register accordingly:

. turn on the PWM setting IB8[D5] = 1

. put the channel in play setting IB8[D0] = 1

The Initial state is the default 11000000. To reach the state PWM on state, we compute 11000000 OR 00100000
to obtain 11100000. To reach the PLAY mode state, we perform 11100000 OR 0001000 to obtain 11110000.

It takes several operations to modify the relevant bits in the IB register in order to transmit a simple instruction to
the amplifier.

The AEK-AUD-D903V1.c simplifies these operations through a list of APIs that can configure the IB registers in a
single command.

For example, the AEK_903D Play (AEK_AUD D903V0) function configures the IB8 register bits required to set
the amplifier in PLAY mode.

Note: The parameter of the function indicates the name of the amplifier to control, so in a stereo system with two audio
boards, we must distinguish between AEK-AUD-D903V0 and AEK-AUD-D903V/1.

UM2719 - Rev 1 page 22/59

m UM2719

AEK-AUD-D903V1.c and sound.c drivers

Figure 20. APl AEK_903D_Play(AEK_AUD_D903V0)

1. The function saves the current state of the IB8 register to the variable FDA903D Status IB
2. The function changes the value of variable FDA903D Status_IB to turn on PWM and activate PLAY mode.
3. The function writes the value of the FDA903D_Status_IB variable to the IB8 register, effectively setting the amplifier in
PLAY mode.
/t*
* @brief This function allows the audio amplifier to go in PLAY state.

*
*

@param[in] AEK_AUD_D903V1_DEVICE dev

*

* @return i2c_result_t
* @api
&'
i2c_result_t AEK_903D_Play(AEK_AUD_D9@3V1_DEVICE dev)
{
if(FDA_Status[dev] != PLAY)
AEK_903D Read IB(dev, IBS,&FDA9@3D Status IB[dev][8],1); °
' (2]
FDA9@3D_Status_IB[dev][8] = (FDA9@3D Status_IB[dev][8] & @xFE) | IB8_PWM ON | IBS_PLAY;
return AEK_903D_Write TB(dev, 188, &FDA983D_Status_I8[dev][8], 1); @)
}

Some APIs in the AEK-AUD-D903V1.c driver require specific configuration parameters. In the following example,
bits D3, D2 and D1 combine to define different configurations (000 = high impedance configuration, 011 = current
sensing configuration, etc.). This API therefore requires indication of the desired configuration as well as the
relevant device when it is invoked.

Figure 21. 128 Test Pin configuration API

1. The user must replace the description with the appropriate value field to indicate the desired configuration.

/**
* @brief This function configures the I2Stest pin.

=

* @param[in] AEK_AUD_D9@3V1_DEVICE dev

*

* [@param[in] value (Choose one of these parameters and copy it into the 'value® field of the function):
*

* - IB8_HIGH_IMPEDENCE_CONFIG

* - IB8_CURRENT_SENSING_ENABLED

* - IB8_PWM_SYNCHRO_SIGNAL

*

* @return i2c_result_t

*

* @api

*/

i2c_result_t AEK_903D_I2TestPinConfiguration(AEK_AUD_D9@3V1_DEVICE dev, uint8_t value)

if(FDA_Status[dev] != PLAY)

AEK_9@3D_Read_IB(dev, IB8,8FDAIO3D_Status_IB[dev][8],1);
}

FDA983D_Status_IB[dev][8] = (FDA9@3D_Status_IB[dev][8] & @xFl) | value;
return AEK_9@3D_Write_IB(dev, IB8, &FDA9@3D_Status_IB[dev][8], 1);

The following table shows all the available functions divided according to the register on which they act.

UM2719 - Rev 1 page 23/59

‘W UM2719

AEK-AUD-D903V1.c and sound.c drivers

Table 9. list of API functions in AEK-AUD-D903V1.c

I Y R

AEK_903D_EnableWritingOnIBs
AEK_903D_DisableWritingOnIBs

1BO AEK _903D_SetlnputDataFormats
AEK _903D_SelectChannelPosition
AEK_903D_SetVoltageMode
AEK_903D_Setl2SWordSelect
AEK_903D_SetPWMSwitchingFrequency
AEK_903D_SetPwmAplifierDithered
AEK_903D_SetPwmAplifierNotDithered
AEK_903D_SetPwminPhase

1B1

AEK_903D_SetPwmOutOfPhase
AEK_903D_SetDiagShort2SupplyTiming
AEK_903D_DisableLowRadiationFunction
AEK_903D_EnableLowRadiationFunction
AEK_903D_ConfigurePowerLimit
AEK_903D_DisableOutputVoltageOffsetDetector
AEK_903D_EnableOutputVoltageOffsetDetector
AEK_903D_DisablelnputOffsetDetector

1B2

AEK_903D_EnablelnputOffsetDetector

AEK _903D_DisableOutputOffsetCurrentDetector
AEK_903D_TriggerOutputOffsetCurrentDetector
AEK_903D_DisableHighPassInDAC
AEK_903D_EnableHighPassIinDAC
AEK_903D_DisableNoiseGating
AEK_903D_EnableNoiseGating
AEK_903D_DisableOpenLoadInPlayDetection

IB3

AEK_903D_TriggerOpenLoadInPlayDetection
AEK_903D_EnableOutputVoltageOffsetinfoOnCDDIAG
AEK_903D_DisableOutputVoltageOffsetinfoOnCDDIAG
AEK_903D_ConfigureThermalWarninglnfoOnCDDIAG
AEK_903D_EnableOvercurrentinfoOnCDDIAG
AEK_903D_DisableOvercurrentinfoOnCDDIAG

1B4 AEK_903D_EnablelnputOffsetinfoOnCDDIAG
AEK_903D_DisablelnputOffsetinfoOnCDDIAG
AEK_903D_EnableShortToVccOrGndinfoOnCDDIAG
AEK _903D_DisableShortToVccOrGndinfoOnCDDIAG
AEK_903D_EnableHighVoltageMuteInfoOnCDDIAG
AEK_903D_DisableHighVoltageMutelnfoOnCDDIAG

IB5 AEK_903D_EnableUvlovccinfoOnCDDIAG

UM2719 - Rev 1 page 24/59

‘W UM2719

AEK-AUD-D903V1.c and sound.c drivers

AEK _903D_DisableUvlovccinfoOnCDDIAG
AEK_903D_EnableThermalShutdowninfoOnCDDIAG

IBS AEK_903D_DisableThermalShutdowninfoOnCDDIAG
AEK_903D_EnablePwmPulseSkippingInfoOnCDDIAG
AEK_903D_DisablePwmPulseSkippinginfoOnCDDIAG
AEK_903D_SelectMuteTimingsetup

1B6 AEK_903D_SelectAudioSignalGainControl
AEK_903D_SelectGainSetting
AEK_903D_SelectDiagnosticRampTime
AEK_903D_SelectDiagnosticHoldTime

®7 AEK_903D_SelectCurrentSensingCommunication
AEK_903D_SelectCurrentSensingProtocolConfiguration
AEK_903D_SetCurrentSensingFullScale
AEK_903D_SetChannelWithPWMoff
AEK_903D_SetChannelWithPWMon
AEK_903D_Eco_Mode

B8 AEK_903D_StartDCDiag
AEK_903D_DisableDCDiag
AEK_903D_12TestPinConfiguration
AEK_903D_Play
AEK_903D_Mute
AEK_903D_EnableWatchDogForWordSelect
AEK_903D_DisableWatchDogForWordSelect

I1B9

AEK_903D_SetShortLoadlmpedanceThreshold
IB10 AEK_903D_SetOpenLoadlmpedanceThreshold

AEK _903D_SetCurrentOffsetThreshold

AEK_903D_SelectOverCurrentProtectionLevel

1B11 AEK_903D_SetSlowSlopePWMConfiguration
AEK_903D_SetDefaultPWMConfiguration

1B12 AEK_903D_SetThermalWarning
AEK_903D_EnableDigitalMutelnPlayForTW1

81 AEK_903D_DisableDigitalMutelnPlayForTW1
AEK_903D_SetFeedbackOnLCFilter
AEK_903D_SetFeedbackOnOutPin

1B14 AEK_903D_SetupLCFilter

AEK_903D_Enable903ToBeProgramVial2C
AEK_9030_Disable903ToBeProgramVial2C

Other functions in AEK-AUD-D903V1.c that are not register specific are listed below:

UM2719 - Rev 1 page 25/59

‘7 UM2719

AEK-AUD-D903V1.c and sound.c drivers

AEK_903D_Write_IB: I2C write to IB registers
AEK_903D_Read_IB: I2C read of single IB register
AEK_903D_Read_All_IB: I?C read of all IB registers
AEK_903D_Read_DB: I2C read of single DB register
AEK_903D_Read_All_DB: I?C read of all DB registers

AEK_903D_SetDefaultRegi initializes I?C registers in AEK-AUD-D903V1 and sets first bit of IB14 to 1 (ready to work)
sters:

AEK_903D_SetEnables: used inside the AEK_903D _Init function to set/clear the Enable pins of the board as defined in
the configuration

AEK_903D_Init: initializes the 1>C and I2S protocol and to launch the AEK_903D_SetEnables function
AEK_903D_I2C_lInit: initializes the 1>C peripheral
AEK_903D_I2S_|Init: initializes the IS peripheral

AEK_903D_CheckOpenlLoa returns the result of the Open Load in Play Detection test on the DBO register in the
dinPlayDetection: FDA903D Errors structure

AEK_903D_CheckOffsetCu returns the result of the Current Offset detection test on the DBO register in the
rrent: FDA903D Errors structure

AEK_903D_CheckinputOffs returns the result of the Input Offset Detection test on the DBO register in the
etDetector: FDA903D Errors structure

AEK_903D_CheckOutputVo returns the result of the Output Voltage Offset Detection test on the DBO register in the
ItageOffsetDetector: FDA903D_Errors structure

AEK_903D_CheckDCDiagn returns the result of the DC Diagnostic on the DB1 register in the FDA903D_Errors structure

ostic:

AEK_903D_Diagnostic: reads the DB register and signals whether a certain failure condition has occurred
(SHORT2VCC, SHORT2GND, OVERCURRENT, UNDERVOLTAGE, OVERTEMPERATURE
OVERVOLTAGE) in the FDA903D_Errors structure

4.3.2 sound.c description

This library contains APIs for the generation, reproduction and simulation of audio wave signals.

initWaveFile: This function takes as input the start address of the first WAV file and the number of files that
you intend to load into memory (maximum number dim=10) and initializes the sound_db
structure with all the necessary addresses to identify the beginning and end of each WAV file.

getStartWavFile: This function computes the address that points to the first audio sample of a given WAV file.

You must provide the function with an integer that identifies the location of the WAV file within
the sound_db structure previously initialized by the initwaveFile function.

UM2719 - Rev 1 page 26/59

‘7 UM2719

AEK-AUD-D903V1.c and sound.c drivers

getHalfWavFile: This function computes the address that points to the middle audio sample of a given WAV file.
You must provide this function with an integer that identifies the location of the WAV file within
the sound_db structure previously initialized by the initwaveFile function.

GetEndWavFile: This function computes the address that points to the last audio sample of a given WAV file.
You must provide this function with an integer that identifies the location of the WAV file within
the sound_db structure previously initialized by the initwaveFile function.

swapEndian32: This function swaps the order of the bits: from little (big) endian to big (little) endian.
validate_wav_file: This function validates the WAV file by checking the WAV file descriptor parameters.
checkWavFile: This function checks the WAV file and identifies the start, middle and end of each WAV file,

removing the WAV file header.
load_channel_data: This function loads new data to the transmission buffer.

playSound: This function plays the sample provided in MONO mode by taking as input a pointer to function
that generates the audio samples and an integer indicating the volume.

playSoundStereo: This function plays the sample provided in STEREO mode by taking as input a pointer to
function that generates the audio samples and an integer indicating the volume.

The last two functions deal with actual sound reproduction. Since these two functions work in the same way, with
the only difference being that one plays mono WAV files and the other stereo files, we will describe how the first
one works.

UM2719 - Rev 1 page 27/59

UM2719

AEK-AUD-D903V1.c and sound.c drivers

3

Figure 22. playSound API

1. This input is a function pointer to the sample that playSound will run. The pointer must refer to the user function, which must
returna uint32 t data type that is assigned to the variable to be transmitted.

2. In this MONO mode example, the same sample is transmitted to both channels. In STEREO mode, the samples for the left
and right channels may differ.

II|'8.
gbrief This function plays the samples provided in MONO mode.

@param[in] volume: integer which determines the sound volume

x
L]
®
x

@param[in] (*sample_source)}(void): function which provides the samples to be played.
®

* @api
*f
void playSecund(int volume, uint32_t (*sample_source)(veid))

{

uint8_t *new_sample;

if (load_new_sample == 1U)

{
new_sample = &txbuf[which_buffer * (sizeof(txbuf) »>> 1)];
for (i =8; i € ((sizeof(txbuf) »> 1)); i += BU)

{
| sample = (*sample source}(); El

sample = (sample®*volume) << 15;

Ilfiiitiitti.i‘Load .I-\.ight cl-lanne]--kl.i.ttllx’\.illf
load_channel_data(sample , new_sample);
new_sample += 4;

II:'“‘!"!I".‘HLGJd lE-Ft channelikﬂiiiltﬂl-}l’ e
load_channel_data(sample, new_sample);
new_sample += 4;

}

FDA_Status[@] = PLAY;
AEK_903D_Read_All_DB(@);
AEK_983D_Read_aAll_IB(@);

load_new_sample = 8;

The sound. c library allows storing samples generated by mathematical functions or writing a function able to
take audio samples from any file WAV loaded in memory.

UM2719 - Rev 1 page 28/59

‘,_l UM2719

How to play an audio WAV file

5 How to play an audio WAV file

5.1 SPC582B60E1 memory map

Excluding the 64 KB data flash, the remaining 1024 KB MCU memory is divided into the following blocks:
. 4 blocks of 16 KB (Low Flash Blocks)

. 2 blocks of 32 KB (Low Flash Blocks)

. 2 blocks of 64 KB (Mid Flash Blocks)

. 6 blocks of 128 KB (Large Flash Blocks)

We allocate the Low and Mid Flash Blocks to load and execute the source code of our application, and the

remaining 6 Large Flash Blocks for the WAV audio files. This of course means that the WAV files cannot exceed
768 KB.

The following microcontroller Flash memory map shows the physical addresses used to identify and divide the
different memory portions.

Table 10. Flash memory map of SPC582B

1 RWR partition
Start address End address Description
RWW Partltlon ID

Data Flash: 64 KB

0x00804000 0x00807FFF 16 KB EEPROM block1 1
0x00808000 0x0080BFFF 16 KB EEPROM block2 1
0x0080C000 0x0080FFFF 16 KB EEPROM block3 1
0x00810000 0x00FBFFFF Reserved

Low & Mid Flash blocks: 256 KB for application code

0x00FC0000 0x00FC3FFF 16 KB Code Flash block1 0
0x00FC4000 0x00FC7FFF 16 KB Code Flash block2 0
0x00FC8000 0x00FCBFFF 16 KB Code Flash block3 0
0x00FCCO000 0x00FCFFFF 16 KB Code Flash block4 0
0x00FD0000 0x00FD7FFF 32 KB Code Flash blockO 0
0x00FD8000 0x00FDFFFF 32 KB Code Flash block1 0
0x00F E0000 O0xO0FEFFFF 64 KB Code Flash block0 0
0x00FF0000 O0x00FFFFFF 64 KB Code Flash block1 0
Large Flash Blocks: 768 KB for audio WAV files
0x01000000 0x101FFFF 128 KB Code Flash block0 0
0x01020000 0x103FFFF 128 KB Code Flash block1 0
0x01040000 0x0105FFFF 128 KB Code Flash block2 0
0x01060000 0x0107FFFF 128 KB Code Flash block3 0
0x01080000 0x0109FFFF 128 KB Code Flash block4 0
0x010A0000 0x010BFFFF 128 KB Code Flash block5 0
0x010C0000 OxOFFFFFFF Reserved
5.2 Uploading audio WAV file

Use the procedure below to upload audio WAV files.

UM2719 - Rev 1 page 29/59

UM2719
Uploading audio WAV file

3

Step 1. Launch SPC5-STUDIO and Create a new SPC5-STUDIO application for Chorus 1M (SPC582B).

Step 2. Right-click the [source] folder to create another folder inside it.
You can name the folder “audio files”.

Step 3. Copy the desired WAV files and paste them inside the newly created folder.
Verify that all files have been inserted.

Figure 23. Project folder for audio files

|E‘_‘| Project Explorer % N = g |

BElay | B4 =71:2340

v Q‘E‘ Project Mame
v & Application Mame
€3 SPC582Bxx Platform Component RLA
w 2 source
v = audic files
|31 my_wav_file_audio_T.wav
|| my_wav_file_audio_2wav
|4 my_wav_file_audio_3.wav
|4 my_wav_file_audio_dwav
|4 my_wav_file_audio_S.wav
|41 my_wav_file_audio_B.wav
fﬁ configuration.xml
readme. b

Step 4. Compile your application.
This creates a file named application. 1d in your project folder.

Step 5. In the same folder, make a copy of the application. 1d file and rename the file according to the
compiler you are using.
— Free GCC — user freegcc.ld.
— Green Hills > user _ghs.1d.
— Hitech - user hightec.1ld.

Step 6. Double click on the user freegcc. 1d file to openiit.

UM2719 - Rev 1 page 30/59

https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

UM2719

Uploading audio WAV file

3

Step 7. Inside the file, modify the memory partition by splitting the flash block into flash and sound blocks.
— The new flash block is 256 KB where application source code is loaded and executed
— The new sound block is 768 KB where audio WAV files are saved

Figure 24. Old flash block memory allocation
1. Old 1 MB flash block
|] userdd 23 b
W 22
23 _irq_stack_size__ = B;
24 __process_stack_size__ = 4896;
25
26 MEMORY
274
28
29 - = BxPOFCBe88, len
1% ram : org = 9x4904A8000, len = 96K
31}
32
33 ENTRY(_reset_address)
34

Figure 25. New flash block memory allocation

1. New 256 KB flash block
2. New 768 KB sound block

Q user.ld X
22

23 __arqg_stack_size = 8;

24 process stack size = = 4896;

25

26 MEMORY

27 4

28 dataflash : org = BxP0800008, len = 128k
29 flash : org = BxBOFCO808, len = 256K
38 sound : org = Ox01000008, len = 768K
31 ram : org = Bx488ABPE8, len = 96K
32}

33

JAENTRY(_reset_address)

35

UM2719 - Rev 1 page 31/59

UM2719

Uploading audio WAV file

3

Step 8. Define a section called sounddb as indicated below.

Figure 26. sounddb definition

1. Location of new sounddb definition
2. sounddb definition code

B userdd 2 '[B) userld N..\-\

125 .eh_frame : ONLY_IF_RO 126 .eh_frame : ONLY_IF_RO

126 { 127 {

127 #(.eh_frame) 128 *(.eh_frame)

128 } > flash 129 } » flash

129 138

130 [mmsmn'tg 131 .sounddb : ALIGN(16)

131 { 132 | {

132 __romdata_start_ = .; 133 __sounddb_start__ = . ;

133 } > flash 134 *(.sounddb)

134 135 *(.sounddb.*) o

135 .stacks : ALIGN(16) SUBALIGN(16) 136 *(.gnu.linkonce.s.*)

136 { 137 KEEP(*(.sounddb))

137 . = ALIGN(8); 138 __sounddb_end_ = .;

138 __irq_stack _base_ = .; 139 } » sound

139 . += __irq_stack_size ; 140

148 . = ALIGN(3); 141 .romdata : ALIGN(16) SUBALIGN(16)

141 __irq_stack_end__ = .; 142 {

142 __process_stack_base_ = .; 143 __romdata_start__ = .;

143 __main_thread_stack_base_ = .; 144 } » flash

144 . += _ _process_stack_size__; 145

145 . = ALIGN(8); 146 .stacks : ALIGN(16) SUBALIGN(16)

146 __process_stack_end__ = .; 147 {

147 __main_thread_stack_end__ = .; 148 . = ALIGN(B);

148 } » ram 1439 __irg_stack_base__ = _;

149 158 . += _ irq_stack_size_ ;
151 . = ALIGN(8);
152 _irg_stack_end__ = .;
153 _ process_stack base_ = .;
154 __main_thread_stack_base__ = .;
155 . += _ process_stack size_ ;
156 . = ALTGN(8);
157 __process_stack_end__ = .;
158 _ main_thread_stack end_ = .;
159 Y » ram

Step 9. Right-click the [source] folder to create a new file called sounddb. s.

UM2719 - Rev 1 page 32/59

UM2719

Uploading audio WAV file

3

Step 10. In the file, indicate the path of the WAV files to be loaded and declare the variables that identify the
physical start and end addresses of the various WAV files.

Below is an example with paths and address variables for six WAV files.

Figure 27. sounddb.s audio file declarations

1. first line of code

2. start address variable for first audio file
3. end address variable for first audio file
4. path to first audio file

&1 workspace - SPC5Studio - Project Mame/source/sounddb.s - SPC35tudie
File Edit Mavigate Search Project Run Window Help

M-l R oef % @SO U Pif -~y

Project Expl S2 = O | [8 *sounddb.s 52 Ly Application Name
= %l anl b | =] tl] g ==] e i.sectiun .sounddb, “a"
o 3 .align 2
P % Project Name g -global engine_startl
= s engine startl:
. B;?F::::::;BNE;:!HO c RLA] .incbin "source/audio files/my wav_file audio l.wav™ o
! wx Platform Component 3 ~global engine_endl 3
» & components engine endl:]
w (8 source g
~ (= audio files 1a -H}:ﬁ“lz X e
: . 11 s al engine_sta
- my_ww_f!lq_audfo_T.ww 12 eng!.ne_stsrt?. i
1] W—W“’-{!Ie—‘“dfo-g"”w 13 .incbin "source/audic files/my_wav_file audio_2.wav"
& my_wav_file_audio_3.wwav 14 .global engine_end2
1] my_wav_file_audio_d.wwav 15 engine_end2:
|4 ry_waw_file_audio_S.wav ig 1 2
) ; . .align
) oy file o1l Bwee 18 .global engine_start3
> @_sw"ddb‘s 19 engine_start3:
» (& build 28 .incbin "sourcefaudio files/my wav_file audio_3.wav"
» &= pelint 21 -global engine_end3
» (@ UDE 22 engine_end3:
|Z] application.ld i: align 2
by cDr!flguratIDn.:oml 25 .global engine_start4
€| main.c 26 engine_startd:
| & Makefile 27 .incbin “sourcefaudioc files/my_wav_file_audio_4.wav"
@ patchaml 28 -global engine_end4d
[E) readme.txt 29 engine_endd:
" 38
|| userld 31 .align 2
|5 user.mak 32 .global engine_starts
33 engine_startS:
24 .incbin “sourcefaudio files/my_wav_file_audio_5.wav"
35 .global engine_endS
35 engine_endS:
37
38 -align 2
39 -global engine_ starté
48 engine_starté:
41 .incbin "source/audio files/my wav_file audio &.wav"
42 .global engine_endé
< 3 43 engine_end6:
= 44
fE= m an [w18 — = m il e

UM2719 - Rev 1 page 33/59

m UM2719

Uploading audio WAV file

Step 11. Recompile the project.
The size of the build output should now include the audio files added in the sounddb. s file.

After compiling, the [build] folder will contain the output file of the application in BIN, DMP, ELF, HEX,
MAP and MOT formats.

Figure 28. Build output before adding sounddb.s component

1. size of build output before adding sounddb.s component

fE Console 3 =] Prupertieq =R Prnblems} i Tasks}

\COT Build Console [Project Mame]
Compiling boot.s
Compiling components.c
Compiling main.c
Compiling crt@.s

Linking build/out.elf
Creating build/out.hex
Creating build/out.bin
Creating build/cut.dmp
Creating build/out.mot

text data bss dec hex filename
4116 (5] da9s 8212 2814 build/out.elf

Done

Figure 29. Build output after adding sounddb.s component

1. added sounddb.s component
2. size of build output after adding sounddb.s component

fE Consale &3 - [Propertieq R Prublems\l & Tasks\l

\CDT Build Console [Project Mame]
Compiling sounddb.s
Compiling main.c
Compiling boot.s
Compiling components.c
Linking build/out.elf
Creating build/ocut.mot
Creating build/out.bin
Creating build/out.dmp
Creating build/out.hex

text data bss dec hex Tilename
557348 5] dgas 561436 8911c build/out.elf

Done

Step 12. Expand the [build] folder, select the out . hex file and move or copy it to the same folder where the
audio files were saved.

The . hex file can actually be saved to any external folder.

UM2719 - Rev 1 page 34/59

m UM2719

Uploading audio WAV file

Step 13. Rename the .hex file as you prefer.
This file contains all the application files.

Step 14. Open your .hex file using a text editor.
You can use the SPC5-STUDIO editor or an external one.

Figure 30. Open hex file with editor

& workspace - SPC55tudic - Project Name/source/audic files/my_hesx_filehex - SPC5Studio
File Edit Mavigate Search Project Run Window Help
R IR =EE R I W

1id]~5 v~

i) Project Explorer & my_hex file.hex &2
1 :0208008480FCFE
S Project N R 2 s 7C1E43A652
v é"le rame = :180@16BBEOBAEISO7E8REBDC7CEER27S7C 21847848
> &= Application Name 4 :100020007C4212767C631A787C58422787CAS2ATEBA
~ [components S :18836BE7CC532787CE73A787D88427870294A7818
5 (= spc582bwc_platform_component_rla 6 :180B40887D4A52787D6B5A787D8C627870ADEATETE
s [@ components.c 7 :18@@56887DCE72787DEF7A787E1882787E318A7804
A componentsh & :108PE0BETES202787E739A787EI4A2TETEBSAATEI2
- P ' o :188870887EDEE2787EF 7BA7E7F18C2787F 39CA7598
=| components.mak 10 :18B@30EE7FSAD2787F 7BDA787FICE2787FBDEATREE
v [source 11 :188@90BE7FDEF 278 7F FFFA7S7085E00A7000(0R007
v (= audio files 12 :1060AREE7AABEGBC70ARCORETCO42840E0051AR490
B myiEdiEim 13 ;18008 188 8FO7! 17C75FBAGIS
) m 14 :1066CPEEARAL44007OCAE2B67062000B7(6001249D
]y Mew > |15 :10e000807060ERF (706002067 C7FRBAGRER400R032
1] my 16 +1BABEABAT
] my Open B2 117 :1npararn7a2AFARATAT 2000645001 50106F57R40AD
2] my Open With 5 [notepad++ 071ASEBOET1A2CABA158672
B7658E0PATR92(00RTEATER
i) 7 7
III m: iz ez Tamin ’ Text Editor 04507 7C04284BE084D874A4
S ; OE@FC7052C03070ABEARADE
> [8] sound Copy EECIN == Editoy SE@BATED2CROB7CE5384068
Paste Ctrl+V = In-Place Editor 4DB752835E8F97500001326
i 066017500060000840004
Delete Delete Default Editor 7 6C
Rl Other...
Rename... F2 sF
28 :1881A
AN imnort 29 :18818 3F
P 30 :1801C E
2= Outline 2 “_ | Export. 31 118010 1F
— = 32 :18@1E
An outline is not avail Refresh 5 33 - 10015 ;
— 341 S OFFFEE0A400440044004400440044
ol Generate SPCS Application 2E .1aRM1ARA AABAAAGLRAADAAABLA ADDAA

UM2719 - Rev 1 page 35/59

m UM2719

Uploading audio WAV file

Step 15. Examine the file and verify that the address is 0200000400FCFE.

00FC is the base address (the first 16 bits) of the physical address of the data contained in each
record.

Figure 31. hex file data

Legend:
: start code, B number of bytes in data field JM address of data added to base address, Il record type (00 data, 01
end of file, 04 Extended linear address for 32-bit addressing, etc.), M data 32 hex digits, M checksum
[my_hex_file hex E3 |
1 5:0200000400FCFE
2 :1000000000A5000000FC0O008700000027C1E43R652
3 :1000L000ES04ES59780000DCT7C0002787C210A7848
4 :100020007C4212787C631A787C8422787CAL2ATEEA
) :100030007CCe32787CET3AT87D0842787D294A7818
6
7
8

:100040007D4A52787D6B5A787TDEC62787DADBATETC
:100050007DCE72787DEFTAJSTEL1082787E318A78D4
:100060007E5292787ET739A78TES4A27T8TEBSAATE32

9 :100070007EDEB278T7EFTBA/S8TF18C2787F39CAT850
10 :100080007F5AD2787F/BDA/8TFICE2T787FBDEATBEE
11 :100090007FDEF2787FFFFA/87088E00A7090C00007
12 :1000R00070ABEOOCT70RA0C0007C042840E0061A0450
13 :1000B0O00C090018548040EBF9706002017CT75FBAGYS
14 :1000C000000444007060E2067062C0007C60012459D
15 :1000D0O00T7060EQFCT7060C2007CT7FOBAG0004000032
16 :1000E00O07800000000000000000000000000000098
17 :1000FO007028E00A7032C0004800180106F870400D
18 :10010000EOFC7052C03071A8E00B71A2C000180072
19 :10011000D0O00O7800005B7088E00AT032C00070A880
20 :10012000E00A70B2C00048077C042840E004D07424

Intel HEX binary data

UM2719 - Rev 1 page 36/59

UM2719

Uploading audio WAV file

In the text editor, search for the string following: 020000040100.
This string contains the base address of the sound partition in the memory where the audio WAV

samples specified in sounddb.s are loaded. The sound partition was defined previously in the

user freegcc.1d file.

Step 16.

Figure 32. Starting point of audio content in hex file

1. search string to find
2. string found in hex file

| & Find/Replace

[my_hex filehex &2

1™

:020000040100

Replace with: |

Scope

® All

Direction

(®) Forward

() Selected lines

() Backward

Options

19120000182186F30086D30179FFF16973000015F6

leieleee?s

[[] Case sensitive []Wrap search

2538
259

[JIncremental

[Regular expressions

Whole word

2562 :10800080052494546246801085741564566607428A2

263 :1eeelecoleppotppeloseleed4AConaass58010aFD
264 :1eee2e600200100064617461006501000020000006E

Replace/Find

Replace All

Replace

268 :10686000000080000020000GF FFFRRR0E0CERERA92

Close

Step 17. Delete all the lines in the hex file before the starting line of the audio content.

The hex file now only contains the sample audio data to be played by the AVAS system.

page 37/59

1
>
Q

14

'

[=2]

&

~

N

=

=)

3

UM2719

Uploading audio WAV file

UM2719 - Rev 1

Step 18. Open the soundb. s file and remove or comment out all paths to the audio sample files.

This ensures that the application does not include the audio content the next time you compile, leaving
only the information regarding the source code.

Figure 33. sounddb.s file with audio sample file paths removed

1. path statements to be commented or deleted
2. build file returns to its original size when the audio content is removed

@ sounddb.s 33"_ m Application Name
1.section .scunddb, “a"

.global engine_startl
rii:

z

3 .align 2

4

5

.inchin "sourcefaudic files/my_wav_file auwdio_1.wav" =
a £

Gengine_endl:

9

18 .align 2

11 -global engine startl

LZengine startd:
»

i‘_.-' Linchin "sourcefaudio fila-i,-"r(::,' wav Tile awdio 2 wav" o |

14 -Elobal engine_endl

15 engine_endi:

156

17 .align 2

18 .global engine start3

iQMn-Imh"-uar'I'1~

:‘d_."" Jinchin “sourcefsudio files/my wav file audioc 3.wav" o | m
21 -global engine_end3

Iiengine_endd:

23

24 .align 2

25 .global engine startd

Jhengine_stactd:

21 s -incbin "source/audio files/my wav file avdio 4.wav" g m
28 -global engine_endd

29 engine_endd:

£1:]

31 -align 2

3z .global engine_start5

33engine_starth:

34/ .inchin "source/audio Tiles/my wav file auwdio 5.wav" ' m
35 .global engine_endS

36 engline_ends:

37

I8 .align 2

39 -global engine_starté

48 engine_startfi:

4.1:" .dnchin “sourcefaudio files/my wav_file awdio 6.wav” I m
42 .global engine_ends

a3 engine_ends:
AN

B Console 2% D Prﬂp-ediﬁ-j:‘_: Problerms | Tﬁhi
COT Build Censole [Project Name]

LA, Wk A T kT
Creating buildfout.mot
Creating build/out.dmp

text ta bss dec hex filenase
4116 a 4898 8212 2814 build/feut.elf

Done

12:86:41 Build Finished (took 25.5%4ms)

Step 19. Recompile the project.

Step 20. Connect the mini-B USB port on the Discovery AEK-MCU-C1MLIT1 control board to a USB port on
your PC with an appropriate mini USB to USB cable.

page 38/59

https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

UM2719

Uploading audio WAV file

3

Step 21. Launch SPC5-UDESTK-SW on your PC and run the debug. wsx file.
This opens a [Multicore / multi program loader] window.

Figure 34. SPC5-UDESTK-SW software with loader window

1. loader window
2. browse file icon
3. remove file icon

P UDE STK 4.10 - CASPCSStudio\workspace\Project Name\UDE\debug.wsx - Core2 - Core2 Symbols
File Edit Debug Show Views Tools Config Window Macre Help
DEFE@dSsa® L D@ o mELT G0 M ®E B D |[Coehaedbyrse s B EHEE
I) Y] A — O
Corel Symbeols = / code <Ox4040FC-0x4044FB> | C:\..\Project Namelmain.c |
?: 0=004040FC oo oo SE_ILLEGAL
2 B g 0x004040FE 00 00 SE_ILLEGAL
""" reakpaints o 0x00404100 70 A0 E0 40 E_LIS R5. 0=x40
0x00404104 70 AF C7 00 E_OR2I RE, 0x7FO0
0x00404108 7C BF 0B A6 HTSFR Ux3F RS
0x0040410C 70 00 00 00 E LI RO, Ox=0
N ANATIN 20 £0 00 00 ETT =] Owel]
7 Multicore / multi program loader m x
X+ + o |
Load File To | Contoller0.Core2 | Hew/ELF | Cancel |
eli} B~
Help |
O = Binary
[= Symbols
= v oo ECLT R2E . 0xU
0x00404160 73 A0 00 00 E_LI R29 . 0x0
000404164 73 CO 00 00 E 1II R30, 0x=0
=x00404168 73 EO 00 00 . LI K31, 0=0
0x0040416C 70 48 E0 0B E_LIS R2. 0=400B
0=00404170 1C 42 00 08 E_ADD1eI R2 . R2.0=8
0x00404174 70 BE E? FB E_LIS RS, 0xF7FB
0x00404178 1C A5 80 00 E_ADD16I RS.R5,-0x8000
0x0040417C 50 C5 03 00 E IWZ RE, Ox300(RS)

Step 22. Click on the [delete] icon in the menu bar to remove the current file from the [Load File To].
Step 23. Click on the [browse] icon to add a new file.

Step 24. Browse to you hex file and select [open].
The [Multicore / multi program loader] window reopens with the hex file in the [Load File To] list.

UM2719 - Rev 1 page 39/59

https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

m UM2719

Uploading audio WAV file

Step 25. Click [OK] to open the [FLASH/OTP Memory Programming Tool] window.

Note: The free UDE license allows you to upload a maximum file size of up to 256 KB.

Figure 35. FLASH/OTP Memory Programming Tool

X UDE - FLASH/OTP Memery Programming Tool - Controller0.Core2 - (DEMO) x

~ FLASH/OTF - Memary Device

[PFLASH: 1 MByte OnChip progiam FLASH (Starterkit] ~| ¥ Ensble

Index | Start [End [Size ~ Remove Al | Erase.. sbout |
0 0«00FCO000 OWDOFCIFFF 16K
1 GOOFC000 CWOOFCTFFF 16K RemoveSel | Progiam | Hep |
2 [«0FCE000 OWOOFCBFFF 16K
3 OO0FCCO00 OWOOFCFFFF 16K veity | Gereral .. |
4 00FD0000 O0FD7FFF 32K
§ (WO0FDBOO0 OWOOFDFFFF 32¢ SW Protect... | Hw Protect. |
6 O«0FE0O00 OWOOFEFFFF BdK
7 MOFFODOD OWOOFFFFFF 64K Test Emoty
8 04000000 OWOIDTFFFF 128K ¢|
0401000000 Ox01D1FFFF Program Al |
9 04020000 OWDIO3FFFF 128K v .
. - o | Sewp.. | Verity 4l |

Step 26. Select the [Erase] button.
A Flash selection window appears.

Step 27. Select from memory block 8 (0x01000000) to block13 and click [Start].

Figure 36. UDE Flash erase tool

1. blocks to be erased
2. start erase procedure
3. exit when erase has completed

% UDE - ELASH/OTD Memane Denarammina Tnal = Controller) Cared - (DEROY %
Select FLASH Sectors to Erase - PFLASH b4

 FLASH

PFL{ ¢ Erase whole FLASH Module r Execute Memtool Command X
L2 Start I

& Erase selected Sectors :

Indi Cancel

- Index | Start | End [Size | ~ —l
Os (0x00FE0O0D Ox00FEFFFF B4K Help [Operation :
Oz 0=00FFO000 O=00FFFFFF 64K IEme Sector 13
g (0=x01000000 0<0101FFFF 128K Result:

9 0x01020000 OxD103FFFF 128K
10 0x01040000 DxD10SFFFF 128K o
11 0x01080000 OxD107FFFF 128K Progiess:

12 0x01080000 0x0109FFFF 128K BB EEEEEEEEEREERREEEEEEEE
D omaem ememr || ANANNNNRRRRRARRRRARRRRRRREY

Mote: Only unprotected sectors are listed here ! o b | o I

Mate: Chip erase may erase protected sectors as well |

Isul:l:eu

00~ OO0 L)) = O

w

Step 28. Click [Exit] when the process has finished.

Step 29. In the FLASH/OTP Memory Programming Tool, click on [Program All].
This process loads the audio samples.

Step 30. Wait until the operation has completed and select [Exit].

UM2719 - Rev 1 page 40/59

UM2719

Uploading audio WAV file

3

Step 31. Close UDE-STK.
You have loaded your audio samples into the designated memory portion.

Step 32. Save your SPC5-STUDIO application and keep the user.1d and sounddb. s files in a folder.

These two files are important because they are the starting point for the creation of the AEK-AUD-
D903V1 application.

UM2719 - Rev 1 page 41/59

m UM2719

AEK-AUD-D903V1 sample applications

6 AEK-AUD-D903V1 sample applications

6.1 How to create a simple AEK-AUD-D903V1 application

Before you start, ensure that the audio samples have been correctly loaded in the microcontroller memory.

This procedure shows you how to play an audio WAV file loaded in memory and perform some diagnostics.

Step 1. Create a new SPC5-STUDIO application for the SPC582B series microcontroller and add the following
components:
— SPC582Bxx Init Package Component RLA
— SPC582Bxx Low Level Drivers Component RLA

These components must be added immediately, or the remaining will not be visible.

Step 2. Add the following further components:

— AutoDevKit Init Package Component
SPC582Bxx Platform Component RLA
— AEK-AUD-D903V1 Component RLA

Figure 37. SPC5-STUDIO adding audio project components

1. SPC582Bxx Platform Component RLA
2. Open available components
3. AEK-AUD-D903V1 Component RLA
File Edit Navigate Search Project Run Window Help

N-HREGAR B @GO AT oD

[?:l Project Explorer 23"‘\7 lél = & ||y *Engine Sound Simulator for AVAS - Test Application 2&’77'\7"
& = = L & — .
EE|ay |6 G |[i] %' 7 || &i Application Configuration

v 55 Engine Sound Simulator for AVAS - Test Applicat] G7 Select availablecomponents X

v &2 Engine Sound Simulator for AVAS - Test Appl
417 SPC582Bxx Platform Component
% AutoDevKit Init Package Component
&% SPC582Bxx Init Package Component RLA|
72 SPC582Bxx Low Level Drivers Compenen

Select one or more compenents to add.

filter text

Flat View Tree View

© [Dep] Board wizard component Compenent Name Vendor Categon ~
{1 [Dep] SPC582Bxx Board Initialization Conf | AEK EV-VNHx7so0c Component RLA STMicroelectronics ~ EV-VNH:
@]' [Dep] SPC582Bxx Clock Component RLA| | . AEK EV-VNx7:oo Component RLA STMicroelectronics EV_VNx7
i [Dep] SPC582Biox IRQ Component RLA x AEK Linear Hall Effect Sensor Component RLA STMicroelectronics Linear_
™ [Dep] SPC582B:c OSAL ComponentRLA| [y ™ gy AUD-D03V1 Component @] STMicroelectronics AEK_AUI
8 source AEK-COM-BLEV1 Component RLA STMicroelectronics ~ AEK-CO
@ configuration.xml))
- -~ 2 AEK-COM-GNSST31 Component RLA STM!croeiectron!cs AEK-CO
4 AEK-LED-21DISM1 Component RLA STMicroelectronics ~ AEK_LEC
H AEK-MOT-SM81M1 Component RLA STMicroelectronics ~ AEK_MC ,
< >
"EE Outline 52 E_f o [] Show hidden components

v & SPC582Bxx Platform Component RLA L IShowincompaibie coanp-cnent:

v %, Platform Settings I oK | ‘ Cancel ‘
23, details

Step 3. Select [AEK-AUD-D903V1 Component RLA] to open the [Application Configuration] window.

UM2719 - Rev 1 page 42/59

UM2719
How to create a simple AEK-AUD-D903V1 application

UM2719 - Rev 1

Step 4.
D903V1 list.

Select the 12S (DSPI) port and the 12S WS. Then, click on [+] to add a new element to the AEK AUD

If you want to create a STEREO version, you will need to insert a second element in the list.

Figure 38. AEK-AUD-D903V1 component configuration

1. AEK-AUD-D903V1 component
2. Pin association
3. add new element icon
4. new entry

(RS Project Explover 53 =0
! cBlab[@al+=-05¢-
v & Engine Sound Simulator far AVAS - Test Application

w & Engine Sound Simulator for AVAS - Test Apglication

& SPCSA2Ew: Platform Compenent RLA

S AutoDevKit Int Package Component
&+ SPC3828ux Init Package Component RLA

2= ent RLA
]' i) AEK-AUD-D%03V1 Component RLA

T T BOETE WIZaTa Comp
| SPC582Bxx Board Initialization Component RLA
] SPC582Bhax Clock Component RLA

1 SPC5E2Bx IRQ Companent RLA

1 SPC382Bxx OSAL Component RLA

=3 source
I configuration.xml
[2) readmeoxt

| BE Outline 22
~ 4 AEK-AUD-D903V1 Component RLA
~ &5, Drver Settings
~ &, Allocation Pin
£, Sedect 125 for AEK AUD D90IV1
» | AEKAUD D903V List {size=1)

Step 5.

Eecw v=)

| (57 *Engine Sound Simulator for AVAS - Test Application £ =
j Application Configuration - @ 5F

AEK-AUD-DI03V1 Component RLA O

Be e~ &~

AEK-AUD-DA03VT driver configuration.

Driver Settings
AEK-AUD-DS03VT Audie amplifier board te werks requires the follewing mandatary configuration settings:

- 125 and 12C peripherals
- 4"Enable” pins properly setted

Mote: all other pins will sllocate automatically. If them not need for the scope of user appli

ion, they have to be deallocat
Allocation Pin
Select 125 for AEK AUD DO03VT

l’us 1250

AEK AUD D903VT L

v Mg lwson ~

£ 1C Enablel Enable? Enable3

M 0 ToBeDefined o 0 1 0

Double click on the newly added element to configure the I12C interface.

The I2C configuration window opens.

page 43/59

m UM2719

How to create a simple AEK-AUD-D903V1 application

Step 6. Select the I2C HW and the address for the power amplifier derived from a combination of enable pins.

To create a STEREO version, you need to assign two different addresses for the two elements so that
you can communicate with each power amplifier independently.

Figure 39. AEK-AUD-D903V1 I)C configuration

1. 12C HW selection
2. Enable pin configuration
3. Confirm configuration

3] *Engine Sound Simulator for AVAS - Test Application &% =8)
&jj Application Configuration 731 o @ &
AEK-AUD-D903V1 Component RLA g ﬁ P e

AEK-AUD-DS03V1 driver configuration.

AEK_FDA903 [0]
Select 12C for FDAS03

Dﬂmc 12C HW v | DrivenBy |Interrupt v Timeout[800 | Numberofswic |1 v

Select Enables pins for FDA903

Select enables pin according to the table below.
Table 1.
Enable 1| Enable 2 | Enable 3 | Enable 4

Amplifier ON address 1 = '1110000’ 0
Amplifier ON address 2 = 1110001’
Amplifier ON address 3 = 1110010
Amplifier ON address 4 = 1110011
Amplifier ON address 5 = 1110100
Amplifier ON address 6 = ‘1110101’
Amplifier ON address 7 = ‘1110110’
Amplifier ON address 8 = “1110111"

o|lo|=|o|lo|lo| =
slol=]=s]=|lo=]=
=|l=2|lo|lo|l=|=2|o
=l=|lalsl0o|lO0|OC

Enablel |0 ¥

Enable2 |0 v

Enable3 |1 %

Enabled |0 v

Step 7. Click the [Allocation] button below the AEK-AUD-D903V1 list and click [OK] in the confirmation
window.
This operation delegates automatic pin allocation to STSW-AUTODEVKIT. If the system warns you that
the selected IS (DSPI) port is not available, restart from step 3 and select another I2S port or another
I2S WS.

UM2719 - Rev 1 page 44/59

https://www.st.com/autodevkitsw

UM2719

How to create a simple AEK-AUD-D903V1 application

3

Step 8. Click on the PinMap editor icon to check that the twelve required pins have been allocated
appropriately.
— 128 SCL (pin 24 — PG11)
— 12S SDA1 (pin 48 — PD5)
- 128 WS (pin 29 — PB11)
— 128 CR (pin 26 — PD11), not used in this application
— I2)C SCL (pin 32 — PB8)
— |>)C SDA (pin 31 — PB9)
— 4 GPIO pins for Enable
- 1 GPIO pin for Hardware Mute
- 1 GPIO pin for CDDIAG, not used in this application

Figure 40. PinMap editor

N

. PinMap editor icon
] “Engine Sound Simulator for AVAS - Test Application [SPCSA2B60E i3 = 0 |[% Commontasks 2 @ Projec

~ Starter actions
How to start with SPC55tudio

@ Create new SPCS applicati

g €
: =
s 2
§E = :
& &
Al H]
=2 =2 [=] [=]
< < g ; 9 Impert samples from appl
PR
< 4 i =
£ Z = =) Editors for ‘Engine Sound Simulat
a9 a - - Here are the available editors on th
I-i i ! @ SPC582_1M MU wizard
IE [BS8M [FiN_AEK_AUD_D303V1Board0_i10_I255C
i i i Bt PinMap editor °
F40_)10_EN3_EN3_GPIO3s <D [N (G| T: PiN_AEK_AUD_D303v1B0ard0_J10_ENZ_§ R s
! 45w T FORST
CODIAG_CDDIAG_GPIO34 T | L 9 TEsTMODE O SPC582B TM clock tree
J10_MUTE_MUTE GPIO33 <T [|
Eo
______ ‘ SPC382B M board view
Lio |
VDD_LV T (B | T VDD_HV_OSC Code centric actions
WOD_HV_I0_MaN T (128 | T oxma Actions to handle code generation
[13 4 EXTAL
IIA + vss HV 0S¢ Generate application code
|15 | T VDD_HV_IO_MAIN overwriting all previous co

H| T VDDV

i i .‘ Compile your application.
. &
w2 = [Execute and debug your 3
2288 g 3283 &° 2
ao3x% ¥ aozxs)
€22 B 3.9 5T
2z :‘ E = 2g] Clean genesated files.
72%8 ¢ 2 I3 §%
28 3 ¢ 823 L&
g °% g%
= E = @ 8 w

Step 9. Close the PinMap Editor and save the application.

Step 10. Generate and build the application using the appropriate icons in SPC5-STUDIO.
The project folder will be populated with new files, including main. c and the components folder with
AEK-AUD-D903V1 and sound drivers.

Step 11. Before starting coding, insert the user freegcc.1ld and sounddb. s files prepared previously.

UM2719 - Rev 1 page 45/59

UM2719
How to create a simple AEK-AUD-D903V1 application

3

Step 12. Open the main. c file and include AEK-AUD-D903V1 and sound files, and define the required
constants and variables.

#include "components.h"
#include "sound.h"
#include "AEK-AUD-D903V1.h"

/*************** Variables Section ***************/

extern uint32 t* engine startl;

/* These variables are defined in the file sounddb.s,
thus it is necessary to declare them as extern */

intl6é t* wavfileBeginPtr; //pointer to wave file initial point
intlé t* wavfileEndPtr; //pointer to wave file final point
intlé t* wavfilePtr; //pointer to wave file current position

uint32 t volume = 1;

/* This variable is defined for the Playsound function.

There is a volume threshold under which the Open Load in Play Detection Test is not
valid.

Thus, if you perform this Test, make sure to increase the volume until you overcome
this threshold */

/************* end Variables Section *************/

UM2719 - Rev 1 page 46/59

m UM2719

How to create a simple AEK-AUD-D903V1 application

Step 13. Place the following functions inside main () :

int main(void)
{
componentsInit();
/* This function initializes all the imported components. It is present in the gener
ated file. */
irgIsrEnable(); /* This function deals with interrupt management */
initWaveFile (¢engine startl, 6);
/*This function takes in input the starting address of the first WAVE file and the n
umber of files yow want to upload */
AEK_903D_Init (AEK AUD D903V1 DEVO) ;
/* This function initializes the I2C and I2S peripherals and sets the enable pins ch
osen during the configuration.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
AEK_903D_SetDefaultRegisters (AEK AUD D903V1 DEVO);
/* This function sets the register to the default state. In the STEREO case,
you would need to duplicate this function for the second device called AEK AUD D903V
1 _DEV1.
AEK_903D_SelectOverCurrentProtectionLevel (AEK AUD D903Vl DEVO, IB11_OVER_CURRENT
_ PROTECTION 4A);
/* This function selects the current protection level from four possible values: 4A,
6A, 8A, and 11A.
The protection circuit will trigger as soon as the chosen threshold is exceeded.
Increasing the volume, you could end up triggering the current protection circuit.
Clearly, lower the threshold (4A), higher the protection triggering probability.
In the STEREO case, you would need to duplicate this function for the second device
called AEK-AUD-D903V1 DEV1. */
AEK_903D_Play(AEK AUD D903V1 DEVO) ;
/*This function turns on the PWM and puts in PLAY state the amplifier.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
wavfilePtr = wavfileBeginPtr = getStartWavFile(0); // set the start address of the f
irst wave file
wavfileEndPtr = getEndWavFile (0); // set the end address of the first wave file/* Ap
plication main infinite loop. */for (; ;)
{
playSound (volume, userFunction);
/* This function allows to play the samples generated with the function pointed by '
userFunction’ .
In the STEREO case, you would need to use the playSoundStereo() .*/
AEK_903D_Diagnostic (AEK AUD D903V1 DEVO) ;
/* This function updates the FDA903 Errors structure with the information contained
in the DB registers.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
AEK_903D_TriggerOpenLoadInPlayDetection (AEK AUD D903Vl DEVO) ;
/* This function triggers the Open Load in Play Detection.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
AEK_903D_CheckOpenLoadInPlayDetection (AEK AUD D903V1 DEVO) ;
/* This function updates the FDA903 Errors structure with the information inside the
DBl register.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
}
}

UM2719 - Rev 1 page 47/59

m UM2719

Available demos for AEK-AUD-D903V1

Step 14. Declare the function uint32 t userFunction (void);in the header file.
You can now write the following code between the variables section and the main () function.

/* In case of multiple wave files, these variables will be re-assigned with new
addresses using the same above functions with different parameters, e.g. getStartWav
File(1); */
uint32 t userFunction ()
{
uintlé_t sampleWav; // sample from wave file to be processed
int32 t sampleToPlay = 0;
if (wavfilePtr > wavfileEndPtr)
// if we reach the end of the file we restart from the initial address
{
wavfilePtr = wavfileBeginPtr;
}
sampleWav = (*wavfilePtr << 8) | ((*wavfilePtr >> 8) & OxFF);
// swap endianness
sampleToPlay = (int32_t)sampleWav;
// place the sample in a 32-bit format
wavfilePtr++;
//pointer to the next wave file sample
return sampleToPlay;

}

Step 15. Save, generate and compile the application.

Step 16. Open the BoardView Editor provided by STSW-AUTODEVKIT.

Step 17. This provides a graphical point-to-point guide on how to wire the boards.

Step 18. Connect the AEK-MCU-C1MLIT1 to a USB port on your PC using a mini-USB to USB cable.

Step 19. Launch SPC5-UDESTK-SW and open the debug.wsx file in the AEK_AUD_D903V1 — Application /
UDE folder.

Step 20. Run and debug your code.
6.2 Available demos for AEK-AUD-D903V1

There are eight different demos with specific features provided with the audio component:

SPC582Bxx_RLA AEK-AUD-D903V1 - Test Application

SPC582Bxx_RLA AEK-AUD-D903V1 - Mono audio and Diagnostic - Test Application
SPC582Bxx_RLA AEK-AUD-D903V1 - Stereo audio and Diagnostic - Test Application
SPC582Bxx_RLA AEK-AUD-D903V1 - I?C Software Mono audio - Test Application

SPC582Bxx_RLA AEK-AUD-D903V1 - Engine Sound Simulator Test Application

SPC58ECxx_RLA AEK-AUD-D903V1 - I2C Software Mono audio - Test Application for SPC58EC-DISP
SPC58ECxx_RLA AEK-AUD-D903V1 - Mono audio - Test Application for SPC58EC-DISP
SPC584Bxx_RLA AEK-AUD-D903V1 - Mono audio - Test Application for SPC584B-DIS

O N R DN =

Note: More demos may become available with new AutoDevKit releases.

6.2.1 How to upload the demos for AEK-AUD-D903V1
Follow the procedure below to import the demos into SPC5-STUDIO.

Step 1. Select [Import samples from application library] from the Common tasks pane.
An Import application Wizard appears.

UM2719 - Rev 1 page 48/59

https://www.st.com/autodevkitsw
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719

3

UM2719

Available demos for AEK-AUD-D903V1

Step 2. In the Import application Wizard, insert the appropriate product family details.

Figure 41. SPC5-STUDIO Import application Wizard
1. Import samples task button

2. Product family selection panel
i SPC55tedio Wizard

&y Comman tasks 21 |) Project Ovenview =
SPCSStudio Wizard ‘
Impedt Application{s] frem SPC35tudic Apphoatson template libirany. ” = Starter actions
ougranied

Herw 1o start with SPCSStude
@ Create new SPCS application

@ Iimpont samples frem applicaticn brary o

Lyj spPcsstudio Import application Wizard

——

Step 1

Editors for *AEK_AUD_DO03V1 - Application’
Sl al'unily' Here are the swmlable edtors on the selected
' ' @ A
SPCSE 5 ’ :
Select 3 product line: ‘6 a SPCSE2_1M MACU wizard
e CHORUSIM-Ling =
Select a device: 0 i g
Al devices ! (i

. SPCSE2E 1M clock trex
Select an evaluation board:

. SPCSEE TM board view
Code centric sctions
Actions to handle code generation, build and del

Generate application code,
ovenriting 8l preaous content.

' Compile your applcation,

ﬂ Execute and debug your application.

UM2719 - Rev 1

page 49/59

m UM2719

Available demos for AEK-AUD-D903V1

Step 3. Select the desired application from the library.

Figure 42. SPC5-STUDIO application library

1. application selector
2. confirmation buttons

Lyy spcsstudio Import application Wizard

Step 2:
Template Bbeary for selected lines 7 evaluation boards.

Select your seaech paramaters:

Baard Cervers FTOS W
O SPC3AIE _Dis O PAL O Ofles

i Serisl) FreeRTOS

O IRQ

O ERQ

O AT

o 5T -

Dcnwuwurumple application: + =

Application Name Description Devices Board Duivers RTOs =~
[0 SPCsadfun RLA PWM-ICU Tt Applicat... Teat spplicstion for the SPCS82Bx created uting the .. SPCSEJBEOEY .. SPCSEZE .. PALICUP. OfSlen
[SPCsaii RLA PIT Test Application for.. Test applicatson for the SPCS82Bx created using the ... SPCSJBEOEY .. SPCSEZE.. PALPIT OSless
[SPC8Mo RLA LIM Test Applicatson for... Test applicatson for the SPC584B0 created using the .. SPCS32BG0EY .. SPCSE2B .. PALLINSe. Ofles
[0 SPCsatBe RLA IRC) Test Apphcation fo.. Test applicatson for the SPC382Bxx created using the ... SPCSRJBBEY .. SPCSEZB .. RO OSLess
[0 sPCsaiiu FLA 125 Test Applicatson for .. Test applicatson for the SPCS82Bxx created using the ... SPCS2IBBIE! .. SPCSEZE .. PALDS O5Less
[0 SPCS828u0_ FLA 12C Test Application for... Test applicatson for the SPC582Bm created wsing the ... SPCSA2BB0EY .. SPCSAZE.. PALLXC OSless
‘rl SPCS&MEe RLA FreeRTOS SERIAL Test A.. Test spplicatson for the SPC382Bw created wsing the ... SPCIAIBGOET .. SPCSEZE .. Serial FrﬂI,T- -4

| C7 -

7 « Back et » Finish Cancel

6.2.2 Mono audio — Test Application (SPC584Bxx and SPC58ECxx)
This demo plays an audio wave file stored in memory.
The main APIs in this demo are:
. AEK 903D_Init: initializes the I*C and 12S interface
. initWaveFile: initializes the structure that contains the addresses used to identify the beginning and end
of each wave file
. getStartWavFile: computes the address pointing to the first audio sample of a given wave file
. GetEndWavFile: computes the address pointing to the last audio sample of a given WAV file
. playSound: plays the samples provided through a pointer to function able to generate audio samples

6.2.3 I>)C Software Mono audio — Test Application (SPC582Bxx and SPC58ECxx)

This demo is like the Mono audio — Test Application, but the 12C protocol is implemented via software thanks to
the allocation of two GPIO pins suitably configured by AutoDevKit itself.

6.2.4 Mono audio and Diagnostic - Test Application (SPC582Bxx)

This demo shows how to reproduce an audio wave file and how to perform system diagnostics during the PLAY
and MUTE states, using the button on the microcontroller board to switch between the two states. The audio
reproduction functions are the same as those in the Mono audio - Test Application, so the functions described
below relate to diagnostics only.

. AEK 903D _TriggerOpenLoadInPlayDetection: triggers the Open Load in Play Detection test
. AEK 903D _CheckOpenLoadInPlayDetection: verifies the result of the Open Load in Play Detection test
. AEK 903D _CheckOffsetCurrent: verifies the result of the Output Current Offset Detection test

UM2719 - Rev 1 page 50/59

https://www.st.com/autodevkit

m UM2719

Available demos for AEK-AUD-D903V1

. AEK_903D_CheckOutputVoltageOffsetDetector: verifies the result of the Output Voltage Offset
Detection test

. AEK_903D_CheckInputOffsetDetector: verifies the result of the Input Offset Detection test

* AEK 903D Diagnostic:reads the DB register and reports if a failure condition has occurred
(SHORT2VCC, SHORT2GND, OVERCURRENT, UNDERVOLTAGE, OVERTEMPERATURE
OVERVOLTAGE)

* AEK 903D Mute:changes from PLAY to MUTE state

. AEK 903D StartDCDiag: changes from MUTE to DC Diag state and to perform the DC diagnostic

. AEK 903D CheckDCDiagnostic: verifies the result of the DC diagnostic.

The red LED on the Discovery control board provides load (speaker) connection status resulting from the Open
Load in Play Detection test during PLAY state operation and the DC diagnostic in MUTE:

. The red LED goes on when an open load fault is detected, and the tests performed are self-validated.

. The red LED stays off when the load is correctly connected, or the tests cannot be self-validated.

6.2.5 Stereo audio and Diagnostic - Test Application (SPC582Bxx)

This demo is the stereo version of the Mono audio and Diagnostic application, in which the functions used are
duplicated to perform the same diagnostics on both boards (i.e., audio channels).

. The red LED communicate the load status of the first board
. The yellow LED communicates the load status of the second board.

6.2.6 Engine Sound Simulator - Test Application for AVAS purpose (SPC582Bxx)

The demo offers an entry-level AVAS implementation using the AEK-AUD-D903V1 AutoDevKit component. The
application uses an algorithm to simulate the sound of an internal combustion engine during acceleration and
deceleration.

The application allows you to:

1. reproduce a WAV file for a car engine sound recorded in Neutral

2. simulate engine ignition and shutdown sounds through a user button on the control board
3. simulate engine noise during acceleration and deceleration

4. change the volume and rpm values through two potentiometers

The acceleration and deceleration phases are simulated by increasing and decreasing the number of samples
reproduced. For example, consider that for an engine idling in Neutral at 800rpm, its sound may be represented
by a sinusoidal wave with period T. We simulate the acceleration phase by decreasing the period (increasing
signal frequency), as shown in the following figure.

Figure 43. Audio sample frequency modulation

audio samples
T =PERIOD
800 rpm
4
5T
2200 rpm
2
3T
3400 rpm

UM2719 - Rev 1 page 51/59

UM2719

Available demos for AEK-AUD-D903V1

The samples in the MCU memory are sampled at 44,100 Hz frequency, and frequency modulation is simulated by
varying the number of samples to be played. The following image shows the algorithm operating principle.

Figure 44. Varying sample numbers to simulate frequency modulation

n = number of samples audio samples
processed «
4, _ 4,
[we are skipping one [
l —‘I sample each 4 samples r—]
£y { played 7% £ i M N "y
L = d ‘] “ ! ‘l LA A : 3 " &
: 3 “ 4 ; b i \ f 4 ¢) f \ f \
3 - - - - = [l Y i S et 2200 rpm
. 5 \ [] r] \ [1 Il 1 '
| * ’ . bt Y}] ' A - [
h”' \“ ‘v" \;‘ W LW ‘1'
2 2
=n =N
.3 3
J : I A I} £\ Iy £\ I A
/Et‘ :“ ,“‘ Ly "W [y : 1 Ly : 1 Ly : 1
.’ $.\ ¢ b ANANANANANANANA
l‘ k - = . 1 - 3 |- jll___r___‘ |' jll;.‘r .'I|| i3 ..r - .'|II..._| 3400 rem
¢ 4 v 4 ; - | i }
N L} 14 P ¥4 47 TERYERTYERY
" “l \vr i \lr W \lr W \Ir W \Ir

The userFunction () used in this application has the following characteristics:
1.

As soon as the application is started and the ignition command is given, the initial pointer is assigned to the
first sample to be played, while the final address is assigned to the last sample.

At the end of the first cycle (i.e., when the pointer to the current sample is the same as the pointer of the last
sample in the audio file for the first time), the algorithm no longer restarts from the first sample, but 90,000

samples after the first. This effectively simulates the effect of engine start and engine idle with a few seconds
of recording.

uint32 t userFunction ()
{
if (acc_first time)

{

wavfilePtr = wavfileBeginPtr = getStartWavFile (0);
wavfileEndPtr = getEndWavFile (0);
acc_first time = false;

}
if (wavfilePtr > wavfileEndPtr)

wavfilePtr = wavfileBeginPtr + 90000;
int32 t amplitude = 0;
uintlé t sampleWav;
sampleWav = (*wavfilePtr << 8) |
//raw sample, change endianness
amplitude = (int32 t)sampleWav;

((*wavfilePtr >> 8) & OxFF);

The acceleration and deceleration is obtained through voltage variation from a potentiometer. This external input

is converted by the microcontroller SARADC, and its value is stored in an rpm variable. The higher the value of
rpm, the greater the number of samples to be skipped.

This method, shown in the code snippet below, can therefore simulate variations in engine rpm sounds in
acceleration and deceleration.

UM2719 - Rev 1 page 52/59

m UM2719

Available demos for AEK-AUD-D903V1

if (rpml <= 2200)
{
if (rpml == 900)
{
if (J < 23)
wavfilePtr++;
else
{

wavfilePtr+ = 2;

j = 0;
}
}
else if (rpml == 1000)
{
if (j < 20)
wavfilePtr++

else

{

wavfilePtr+ = 2;

j = 0;
}
}
etc...
else if (rpml == 2200)

{
if (3 < 12)
{

wavfilePtr++;

}
else

{
wavfilePtr =+ 4;
j = 07
}
}
else//800 rpm
wavfilePtr++;

UM2719 - Rev 1

page 53/59

‘7 UM2719

Revision history
Table 11. Document revision history

T N R

19-May-2020 1 Initial release.

UM2719 - Rev 1 page 54/59

m UM2719

Contents
Contents

1 AVAS system hardwarettt saas s iaaaananannnnnnnns 2

2 AEK-MCU-C1MLIT1 Discovery board audiosupportccoiiiiiiiinnnnnnnnn 3

2.1 I?S bus interface on the SPC582B60E1 microcontroller. 4

211 I2S protocol details e 4

21.2 I2S emulation on DSPI for SPC5 MCU control of FDA903D amplifier 4

2.2 I?C bus interface on the SPC582B60E1 microcontroller 6

3 AEK-AUD-D903V1 evaluation board for automotive power amplifier 8

3.1 FDA903D finite state machine. 8

3141 FDA903D FSM state descriptions. e 10

3.2 FDAOSO3D I2S protoCol.o e 1"

3.3 FDAOSO3D I2C protocColo 11

3.31 [2C protocol writing procedure 12

3.3.2 I2C protocol: reading procedure. 14

3.3.3 IBregisters in 12C 15

3.34 DBregisters in I2C. 16

3.3.5 DIV L o 17

3.4 Potentiometers 17

3.5 Successive approximation analog-to-digital converter (SARADC) 18

3.6 Stereo mMOdeo 18

4 AVAS system software.cciiiiiiiiiiiiii i i 21

4.1 SPC5-STUDIO . . e 21

4.2 STSW-AUTODEVKIT . .. e e e e 21

4.3 AEK-AUD-D903V1.cand sound.cdAriverst 21

4.31 AEK-AUD-DO03V1.CAriVEr . . .o ot e 21

4.3.2 sound.c descCription 26

5 How to play an audio WAV filec.coiiiiiii i ennnnns 29

5.1 SPC582BB0ET MEMOIY Map. . oot ittt et e et e e e e e e 29

5.2 Uploading audio WAV file 29

6 AEK-AUD-D903V1 sample applications. ...t iiaeaens 42

UM2719 - Rev 1 page 55/59

m UM2719

Contents

6.1 How to create a simple AEK-AUD-D903V1 application 42

6.2 Available demos for AEK-AUD-DO03V 1. 48

6.2.1 How to upload the demos for AEK-AUD-DO03V1 i 48

6.2.2 Mono audio — Test Application (SPC584Bxx and SPC58ECXX). 50

6.2.3 I2C Software Mono audio — Test Application (SPC582Bxx and SPC58ECxx) 50

6.2.4 Mono audio and Diagnostic - Test Application (SPC582Bxx). 50

6.2.5 Stereo audio and Diagnostic - Test Application (SPC582BxX). oo 51

6.2.6 Engine Sound Simulator - Test Application for AVAS purpose (SPC582Bxx). 51

ReVISiON RiStoryt i it 54

UM2719 - Rev 1 page 56/59

‘7 UM2719

List of figures

List of figures

Figure 1. AVAS system AutoDevKit control board and audioboard 1
Figure 2. AVAS Demo hardware and connections. e 2
Figure 3. AEK-MCU-C1MLIT1 Discovery board COmMpoNeNnts it et et e e 3
Figure 4. Standard IPS data format 5
Figure 5. Connector CN10 pins for DSPIOo 5
Figure 6. I2C typical data format 6
Figure 7. Connector CN10 pins dedicated to I2C. 7
Figure 8. AEK-AUD-D903V1 main components and interfaces. 8
Figure 9. FDAQ03D state machine 9
Figure 10. 128 (DSPI) connection in AEK-AUD-DO03V 1.o 11
Figure 11. I2C connection in AEK-AUD-DO03V 1 12
Figure 12. ENABLE pin locations onthe connector. e e 13
Figure 13. Read operation packet. e 14
Figure 14. Read operation required data. e e 14
Figure 15. Read operation with repeated start condition 14
Figure 16. Linear potentiometer CirCUit 18
Figure 17. Potentiometer CONNeCioNS. 18
Figure 18. AVAS system fortwo stereosound 19
Figure 19. AEK-MCU-C1MLIT1 seenonboth sides e 20
Figure 20. API AEK_903D_Play(AEK_AUD_D903VO0).t ittt e e e e e e e e e e 23
Figure 21. 12S Test Pin configuration APl 23
Figure 22. playSound APl 28
Figure 23. Project folder foraudio files 30
Figure 24. Old flash block memory allocation. 31
Figure 25. New flash block memory allocation 31
Figure 26. sounddb definition. 32
Figure 27. sounddb.s audio file declarations 33
Figure 28. Build output before adding sounddb.s component 34
Figure 29. Build output after adding sounddb.s component 34
Figure 30. Open hexfile with editor 35
Figure 31. hexfile data 36
Figure 32. Starting point of audio contentin hexfile 37
Figure 33. sounddb.s file with audio sample file pathsremoved 38
Figure 34. SPC5-UDESTK-SW software with loaderwindow e 39
Figure 35. FLASH/OTP Memory Programming TOOIo e e e e e 40
Figure 36. UDE Flash erase tool e e 40
Figure 37. SPC5-STUDIO adding audio project COmMpoNENtst e e e e 42
Figure 38. AEK-AUD-D903V1 component configuration 43
Figure 39. AEK-AUD-D903V1 I2C configuration 44
Figure 40. PinMap editor. 45
Figure 41. SPC5-STUDIO Import application Wizard e 49
Figure 42. SPC5-STUDIO application library 50
Figure 43. Audio sample frequency modulation 51
Figure 44. Varying sample numbers to simulate frequency modulation 52

UM2719 - Rev 1 page 57/59

m UM2719

List of tables
List of tables
Table 1. I2C device address combinations 9
Table 2. Legacy mode Enable configurations. 10
Table 3. IPCaddress 1 selection. 12
Table 4. Subaddress association 13
Table 5. IBregister map 15
Table 6. DB register Map. o 16
Table 7. Comparison of pin settings for addresses 1 and 3 20
Table 8. FDA903D IB8 register description 22
Table 9. list of API functions in AEK-AUD-DO03V1.C. 24
Table 10. Flash memory map of SPC582B 29
Table 1. Document revision history 54

UM2719 - Rev 1 page 58/59

m UM2719

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics — All rights reserved

UM2719 - Rev 1 page 59/59

http://www.st.com/trademarks

	Introduction
	1 AVAS system hardware
	2 AEK-MCU-C1MLIT1 Discovery board audio support
	2.1 I²S bus interface on the SPC582B60E1 microcontroller
	2.1.1 I²S protocol details
	2.1.2 I²S emulation on DSPI for SPC5 MCU control of FDA903D amplifier

	2.2 I²C bus interface on the SPC582B60E1 microcontroller

	3 AEK-AUD-D903V1 evaluation board for automotive power amplifier
	3.1 FDA903D finite state machine
	3.1.1 FDA903D FSM state descriptions

	3.2 FDA903D I²S protocol
	3.3 FDA903D I²C protocol
	3.3.1 I²C protocol writing procedure
	3.3.2 I²C protocol: reading procedure
	3.3.3 IB registers in I²C
	3.3.4 DB registers in I²C
	3.3.5 Driver

	3.4 Potentiometers
	3.5 Successive approximation analog-to-digital converter (SARADC)
	3.6 Stereo mode

	4 AVAS system software
	4.1 SPC5-STUDIO
	4.2 STSW-AUTODEVKIT
	4.3 AEK-AUD-D903V1.c and sound.c drivers
	4.3.1 AEK-AUD-D903V1.c driver
	4.3.2 sound.c description

	5 How to play an audio WAV file
	5.1 SPC582B60E1 memory map
	5.2 Uploading audio WAV file

	6 AEK-AUD-D903V1 sample applications
	6.1 How to create a simple AEK-AUD-D903V1 application
	6.2 Available demos for AEK-AUD-D903V1
	6.2.1 How to upload the demos for AEK-AUD-D903V1
	6.2.2 Mono audio – Test Application (SPC584Bxx and SPC58ECxx)
	6.2.3 I²C Software Mono audio – Test Application (SPC582Bxx and SPC58ECxx)
	6.2.4 Mono audio and Diagnostic - Test Application (SPC582Bxx)
	6.2.5 Stereo audio and Diagnostic - Test Application (SPC582Bxx)
	6.2.6 Engine Sound Simulator - Test Application for AVAS purpose (SPC582Bxx)

	Revision history

