

Figure 1. KITVR55-FSSKTEVM

Important Notice

NXP provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This evaluation board may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This evaluation board is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact NXP sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typical, must be validated for each customer application by customer's technical experts.

NXP does not convey any license under its patent rights nor the rights of others. NXP products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the NXP product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use NXP products for any such unintended or unauthorized application, the Buyer shall indemnify and hold NXP and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges NXP was negligent regarding the design or manufacture of the part.

1 Introduction

This document is the user guide for the KITVR55-FSSKTEVM evaluation board. This document is intended for the engineers involved in the evaluation, design, implementation, and validation of VR5500 high voltage PMIC with multiple SMPS and LDO.

The scope of this document is to provide the user with information to evaluate the VR5500 high voltage PMIC with multiple SMPS and LDO. This document covers connecting the hardware, installing the software and tools, configuring the environment and using the kit.

The KITVR55-FSSKTEVM enables development on VR5500 device. The kit can be connected to the FlexGUI software which allows you to play with registers, try OTP configurations, and burn the part.

The device can be placed and removed easily from the board by using the socket. The device OTP can be burned three times, which provides a good flexibility.

2 Finding kit resources and information on the NXP website

NXP Semiconductors provides online resources for this evaluation board and its supported device on <http://www.nxp.com>.

The information page for KITVR55-FSSKTEVM evaluation board is at <http://www.nxp.com/KITVR55-FSSKTEVM>. The information page provides overview information, documentation, software and tools, parametrics, ordering information and a **Getting Started** tab. The **Getting Started** tab provides quick-reference information applicable to using the KITVR55-FSSKTEVM evaluation board, including the downloadable assets referenced in this document.

2.1 Collaborate in the NXP community

The NXP community is for sharing ideas and tips, ask and answer technical questions, and receive input on just about any embedded design topic.

The NXP community is at <http://community.nxp.com>.

3 Getting ready

Working with the KITVR55-FSSKTEVM requires the kit contents, additional hardware, and a Windows PC workstation with installed software.

3.1 Kit contents

- Assembled and tested evaluation board in an anti-static bag
- 3.0 ft USB-STD A to USB-B-mini cable
- Two connectors, terminal block plug, 2 pos., str. 3.81 mm
- Three connectors, terminal block plug, 3 pos., str. 3.81 mm
- Jumpers mounted on board

3.2 Additional hardware

In addition to the kit contents, the following hardware is necessary or beneficial when working with this kit.

- Power supply with a range of 8.0 V to 60 V and a current limit set initially to 1.0 A

3.3 Windows PC workstation

This evaluation board requires a Windows PC workstation. Meeting these minimum specifications should produce great results when working with this evaluation board.

- USB-enabled computer with Windows 7 or Windows 10

3.4 Software

Installing software is necessary to work with this evaluation board. All listed software is available on the information page of the evaluation board at <http://www.nxp.com/KITVR55-FSSKTEVM> or from the provided link.

- FlexGUI latest version
- VR5500 OTP Config.xlsx
- Java installation <https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html>

4 Getting to know the hardware

The KITVR55-FSSKTEVM provides flexibility to play with all the features of the device and make measurements on the main part of the application. The KL25Z MCU installed on the board, combined with the FlexGUI software allows access to the registers in read and write mode. All regulators are accessible through connectors. Nonuser signals, like DC-to-DC switcher node are mapped on test points. Digital signals (I2C, RSTB, etc.) are accessible through connectors. Pin WAKE1 has a switch to control (ignition) them. A V_{BAT} switch is available to power on or off the device.

The main purpose of this kit is to burn the OTP configuration. This kit can be operated in Emulation mode or in OTP mode. In Emulation mode, as long as the power is supplied, the board configuration stays valid. The OTP mode uses the fused configuration. The device can be fused three times. In OTP mode, the device always starts with the fused configuration, except if the user wants to overwrite OTP configuration using Emulation mode. This board is able to fuse the OTP without any extra tools or board.

Note: Due to the socket, this kit is not optimized for performance measurement or current higher than 1.0 A.

4.1 Kit overview

The KITVR55-FSSKTEVM is a hardware evaluation tool that allows OTP burning. Due to the socket, the VR5500 part can be configured without the need to solder it. The device can be programmed three times (see [Section 7.3](#)).

An Emulation mode is possible to test as many configurations as needed.

An external LDO provides VDDI2C voltage with a choice of 1.8 V or 3.3 V (default). VDDIO is assigned by default to VDDI2C. From USB voltage, an external DC-to-DC generates the OTP programming voltage (8.0 V) without any need for an external power supply.

4.1.1 KITVR55-FSSKTEVM features

- VBAT power supply connectors (Jack and Phoenix)
- VPRE output capability up to 1.0 A (socket limit)
- VBUCK1/2 in Standalone mode (default) or Multiphase mode
- VBUCK3
- VBOOST 5.0 V or 5.74 V
- LDO1 and LDO2, from 1.1 V to 5.0 V
- Ignition key switch
- Embedded USB connection for easy connection to software GUI (access to I²C-bus, IOs, RSTB, INTB, Debug, MUX_OUT, regulators)
- LEDs that indicate signal or regulator status
- Support OTP fuse capabilities
- USB connection for register access, OTP emulation, and programming
- Voltage monitoring jumper setting

Note: Due to the socket, all current capabilities are limited to 1.0 A.

4.1.2 VMON1 board configuration

VMON1 is a general-purpose voltage monitoring input. VMON1 can be connected to VPRE, LDO1, LDO2, BUCK3, BUCK2 (in case BUCK2 is not used in multiphase), or even an external regulator. This kit is delivered with VMON1 assigned to VPRE, the bridge resistor set for 3.3 V.

Due to the jumpers, VMON1 can be tied to a 0.8 V to force a good voltage at pin level. It behaves like hardware disabling and makes debug easy in some cases.

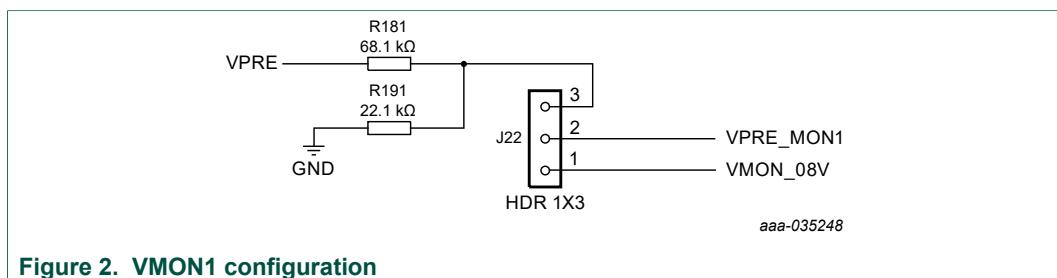


Figure 2. VMON1 configuration

4.1.3 VPRE compensation network

This board is delivered with a VPRE compensation network defined for VPRE 4.1 V at 450 kHz. All other VPRE configurations require a new calculation for these components.

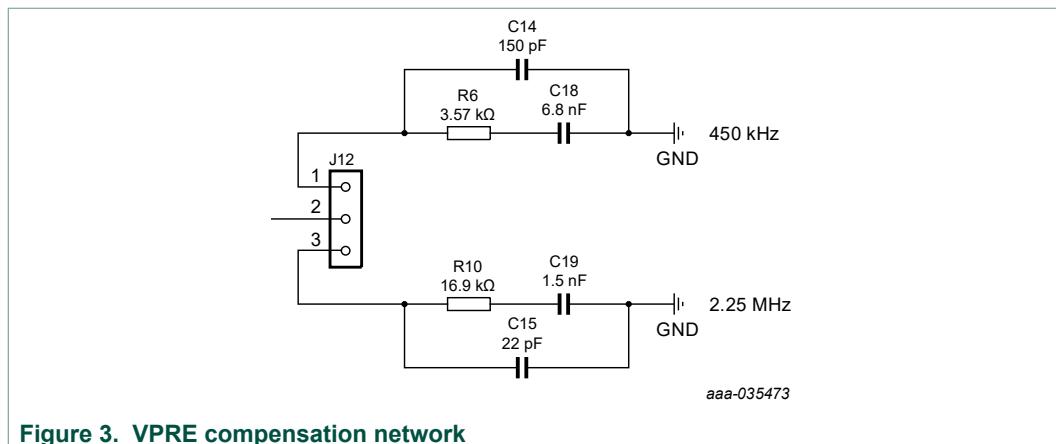


Figure 3. VPRE compensation network

Table 1. Compensation network

Components	VPRE 450 kHz	VPRE 2.2 MHz
C18/C19	6.8 nF	1.5 nF
C14/C15	150 pF	22 pF
R6/R10	3.57 kΩ	16.9 kΩ

4.1.4 BUCK1 and BUCK2 multiphase configuration

The board is designed to work independently with BUCK1 and BUCK2. Due to R11 and R145, it is possible to connect both connectors together and work in multiphase.

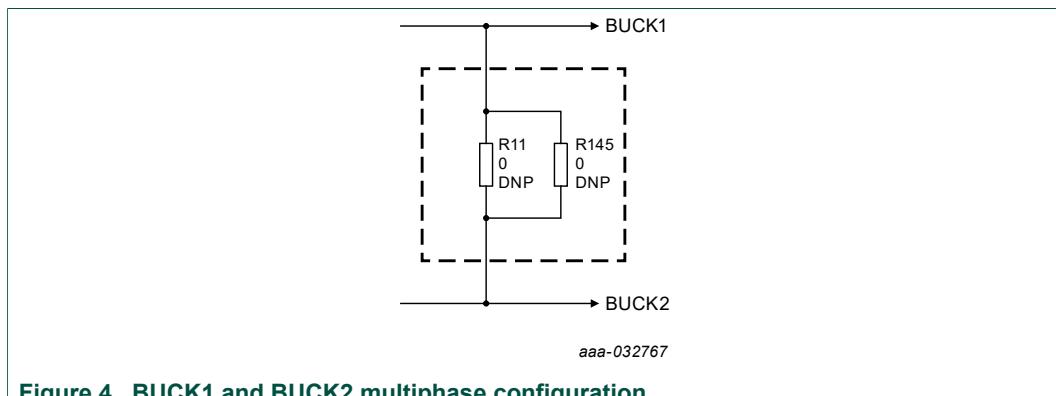
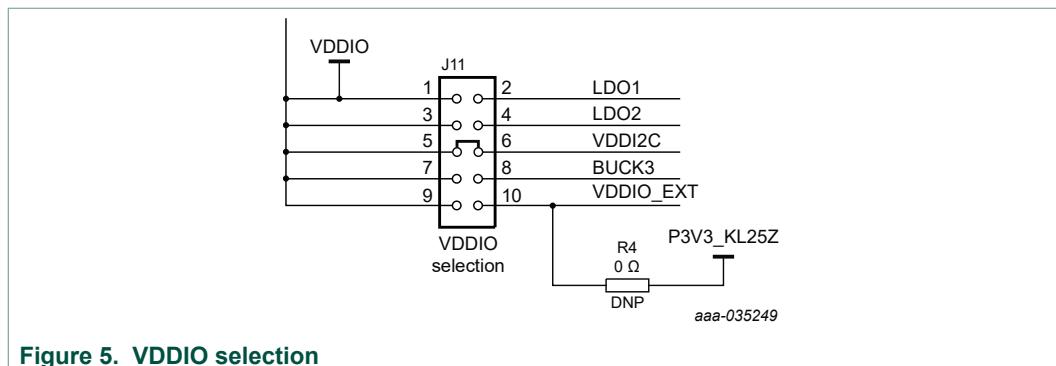



Figure 4. BUCK1 and BUCK2 multiphase configuration

4.1.5 VDDI2C

As an option, an external LDO is provided to feed VDDI2C. This LDO can also be used to feed VDDIO, which is the default implementation.

The I²C-bus is compatible with 1.8 V or 3.3 V, while VDDIO is compatible with 3.3 V and 5.0 V. For this reason, the LDO default configuration is 3.3 V. The LDO is supplied by 5.0 V coming from the USB.

Figure 5. VDDIO selection

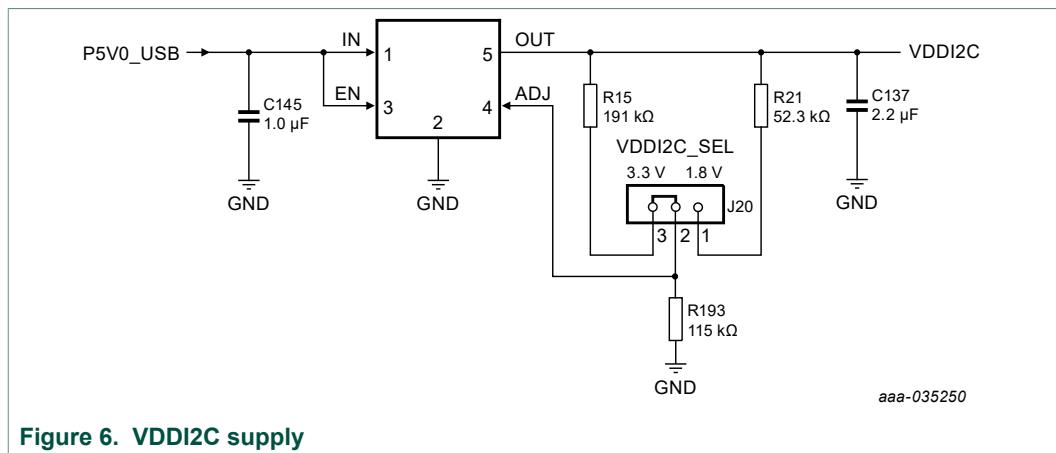
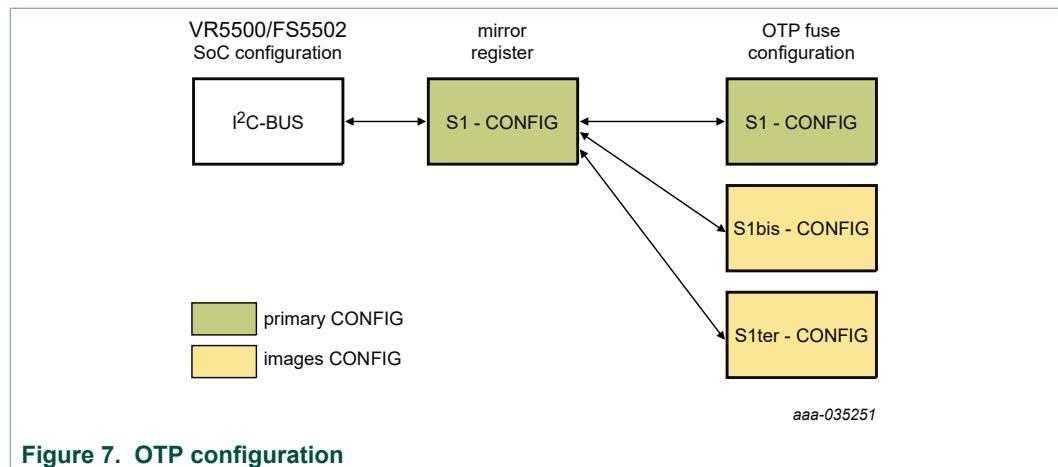


Figure 6. VDDI2C supply

4.2 Device OTP user configuration

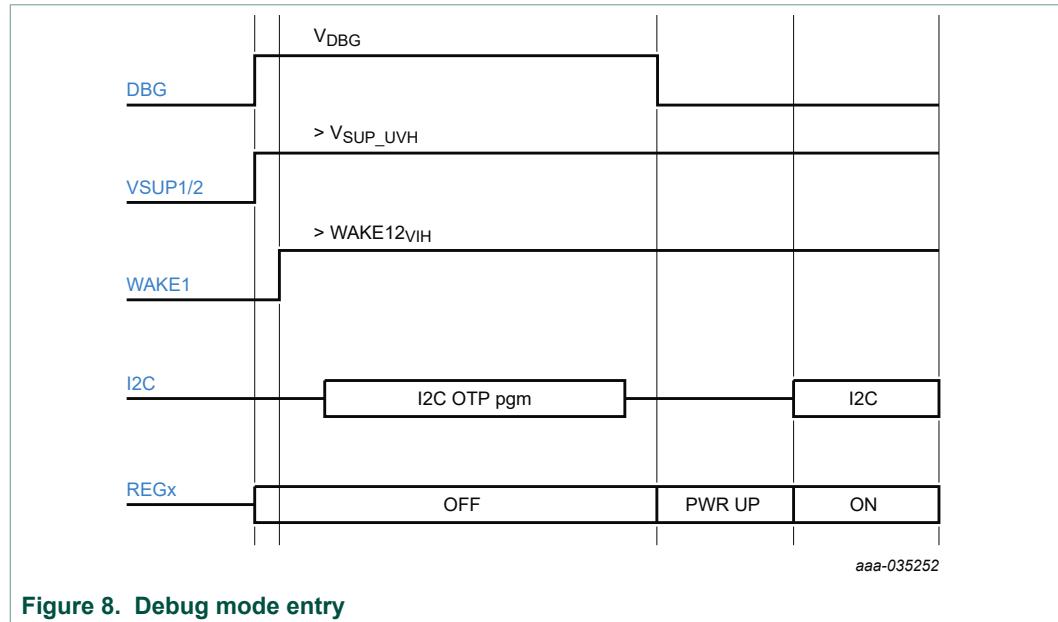

It is recommended to learn about OTP before operating with the device. The device has a high level of flexibility due to parameter configuration available in the OTP, which impacts the functionality of the device. It is key to understand how OTP parameters can be programmed, the interaction with mirror registers and the VR5500 SoC.

The OTP related operations can be performed either in Emulation mode, where the product uses a given configuration as long as power supply is not switched off or from OTP fuse content that is valid even after a power down/power up sequence.

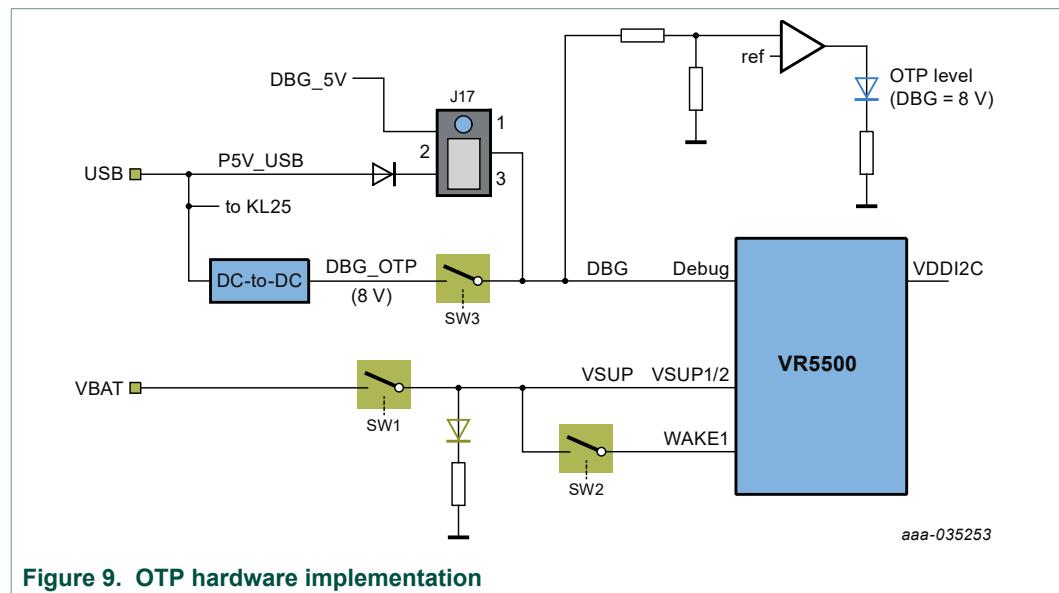
4.2.1 OTP and mirrors registers

There are two OTP blocks in the device. One is for the main section, and the other for the fail-safe. During configuration, each of them are using dedicated sectors. The OTP configuration scheme is shown in [Figure 7](#) (same implementation for main and fail-safe).

The device can be fused three times using mirror registers. The user can first load the mirror register content with the desired contents, then decide either to use the device in Emulation mode or to burn the next sector. The first sector to be burned is S1, the second S1bis, and the third S1ter. FlexGUI automatically manages the next sector to be burned. It is not possible to revert to the previous sector. When the user reaches the sector S1ter, there no other possibility for burn, however emulation mode is still available.

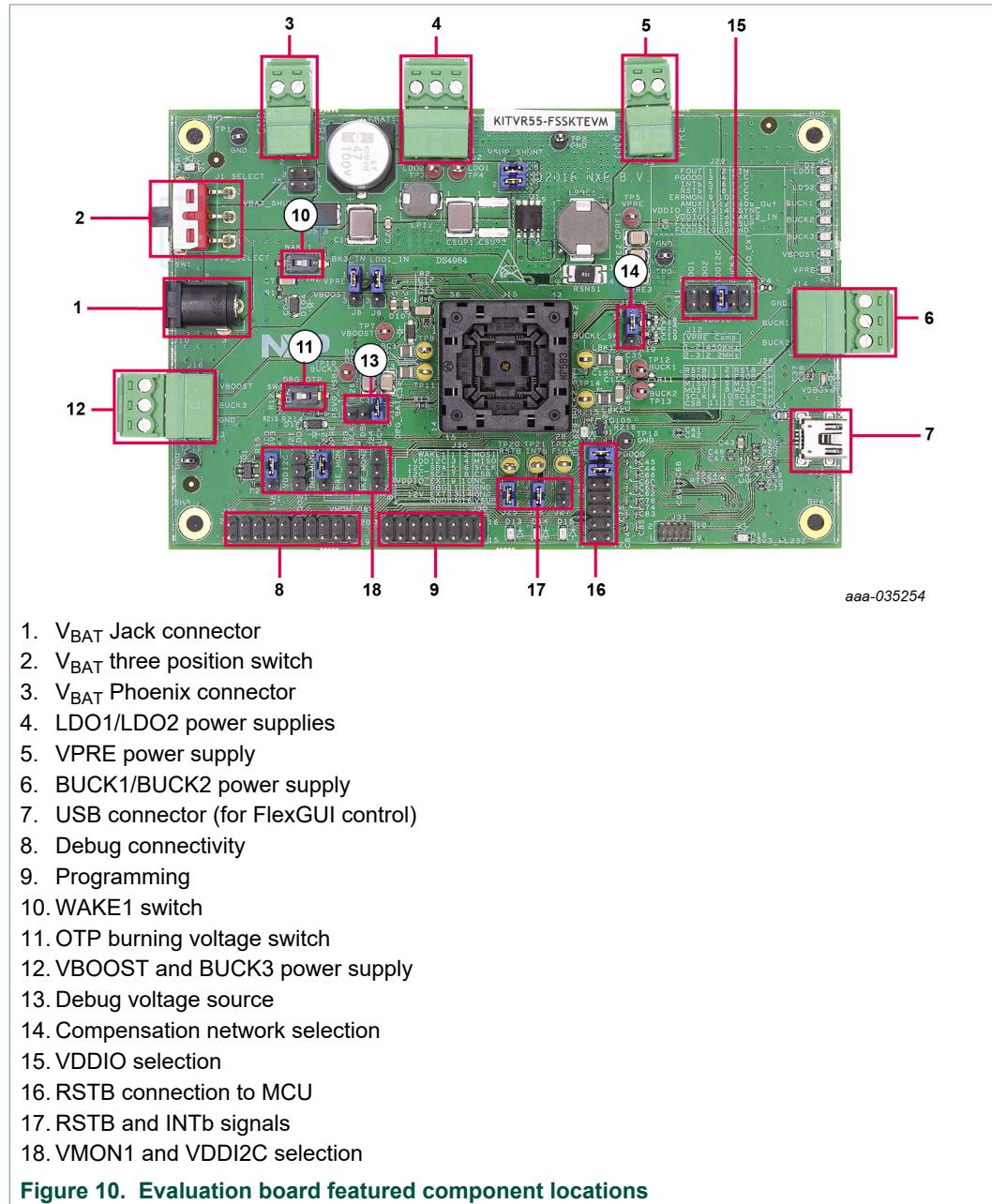

Figure 7. OTP configuration

At boot, the content of the valid sector is loaded into the Mirror Register Sector 1. The mirror register content is accessible from FlexGUI by using specific I²C-bus commands. The mirror configuration is managed by the FlexGUI, which eases the access.


4.2.2 OTP hardware implementation

To work in OTP emulation or OTP programming, it is required to start the device in Debug mode.

[Figure 8](#) shows the sequence to be followed to enter in Debug mode. The voltage sequence on the kit is done using switches installed on the board, while the OTP registers configuration is managed by the FlexGUI. It is described in detail in the following sections.


Figure 8. Debug mode entry

[Figure 9](#) shows the hardware kit implementation.

4.3 Kit featured components

[Figure 10](#) identifies important components on the board and [Table 2](#) provides additional details on these components.

Table 2. Evaluation board component descriptions

Number	Description
1	V_{BAT} Jack connector
2	V_{BAT} three position switch <ul style="list-style-type: none"> Left position: board supplied by Jack connector Middle position: board not supplied Right position: board supplied by Phoenix connector
3	V_{BAT} Phoenix connector
4	LDO1/LDO2 power supplies
5	VPRE power supply
6	BUCK1/BUCK2 power supply
7	USB connector (for FlexGUI control)
8	debug connectivity; access to: <ul style="list-style-type: none"> VSUP, GND FOUT/FIN PGOOD/RST WAKE2 PSYNC, AMUX VMON1
9	programming <ul style="list-style-type: none"> I²C-bus Pin DBG VPRE, VSUP, GND
10	WAKE1 switch
11	OTP burning voltage switch
12	VBOOST and BUCK3 power supply
13	debug voltage source either from USB (recommended) or from VSUP
14	VPRE compensation network selection, either 2.2 MHz or 450 kHz
15	VDDIO source from device regulators or external sources
16	RSTB can be disconnected between device and MCU
17	RSTB and INTb signals available here (device pin level)
18	allows user to select VMON1 from regulators or a fix 0.8 V; VDDI2C can be selected either 1.8 V or 3.3 V

4.3.1 VR5500: high voltage PMIC with multiple SMPS and LDO

4.3.1.1 General description

The VR5500 is an automotive high-voltage multi-output power supply integrated circuit, with focus on radio, V2X, and infotainment applications. It includes multiple switch mode and linear voltage regulators. It offers external frequency synchronization input and output, for optimized system EMC performance.

Several device versions are available, offering choice in number of output rails, output voltage setting, operating frequency, and power up sequencing, to address multiple applications.

4.3.1.2 Features

- 60 V DC maximum input voltage for 12 V and 24 V applications
- VPRE synchronous buck controller with external MOSFETs. Configurable output voltage, switching frequency, and current capability up to 10 A peak.
- Low voltage integrated synchronous BUCK1 converter, dedicated to MCU core supply with SVS capability. Configurable output voltage and current capability up to 3.6 A peak.
- Low voltage integrated synchronous BUCK2 converter. Configurable output voltage and current capability up to 3.6 A peak. Multi-phase capability with BUCK1 to extend the current capability up to 7.2 A peak on a single rail. Static voltage scaling capability.
- Low voltage integrated synchronous BUCK3 converter. Configurable output voltage and current capability up to 3.6 A peak.
- BOOST converter with integrated low-side switch. Configurable output voltage and max input current up to 1.5 A peak.
- EMC optimization techniques including SMPS frequency synchronization, spread spectrum, slew rate control, manual frequency tuning
- Two linear voltage regulators for MCU IOs and ADC supply, external physical layer. Configurable output voltage and current capability up to 400 mA DC.
- OFF mode with very low sleep current (10 μ A typ)
- Two input pins for wake-up detection and battery voltage sensing
- Device control via I²C-bus interface with CRC
- Power synchronization pin to operate two VR5500 devices or VR5500 plus an external PMIC
- Three voltage monitoring circuits, dedicated interface for MCU monitoring, power good, reset, and interrupt outputs
- Configuration by OTP programming. Prototype enablement to support custom setting during project development in engineering mode.

4.3.2 Indicators

The following LEDs are provided as visual output devices for the evaluation board:

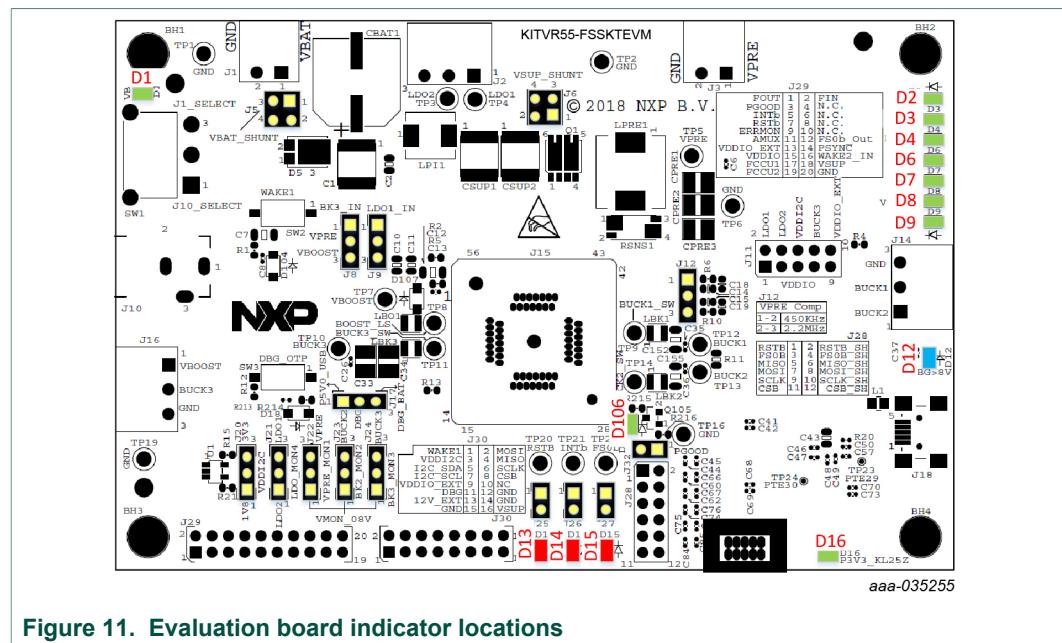


Figure 11. Evaluation board indicator locations

Table 3. Evaluation board indicator descriptions

Label	Name	Color	Description
D1	V _{BAT}	green	V _{BAT} on
D2	LDO1	green	LDO1 on
D3	LDO2	green	LDO2 on
D4	BUCK1	green	BUCK1 on
D6	BUCK2	green	BUCK2 on
D7	BUCK3	green	BUCK3 on
D8	VBOOST	green	VBOOST on
D9	V _{PRE}	green	V _{PRE} on
D12	DBG > 8.0 V	blue	DBG pin voltage > 8.0 V (OTP programming)
D13	RSTB	red	RSTB asserted (logic level = 0)
D14	INTb	red	INTb asserted (logic level = 0)
D15	FS0b	red	not available
D16	P3V3_KL25	green	P3V3_KL25 on
D106	PGOOD	green	PGOOD released

4.3.3 Connectors

Figure 12 shows the location of connectors on the board.

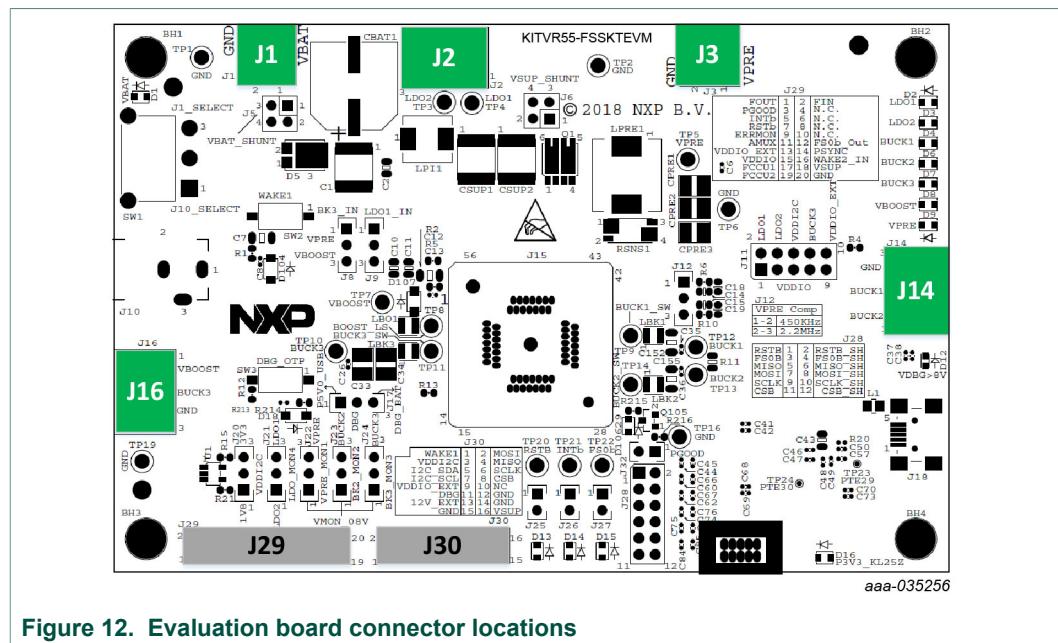


Figure 12. Evaluation board connector locations

4.3.3.1 V_{BAT} connector (J1)

V_{BAT} connects to the board through Phoenix connector (J1).

Table 4. V_{BAT} Phoenix connector (J1)

Schematic label	Signal name	Description
J1-1	V _{BAT}	battery voltage supply input
J1-2	GND	ground

4.3.3.2 Output power supply connectors

Table 5. BUCK1/BUCK2 connector (J14)

Schematic label	Signal name	Description
J14-1	BUCK2	BUCK2 power supply output
J14-2	BUCK1	BUCK1 power supply output
J14-3	GND	ground

Table 6. VBOOST/BUCK3 connector (J16)

Schematic label	Signal name	Description
J16-1	VBOOST	VBOOST output
J16-2	BUCK3	BUCK3 power supply output
J16-3	GND	ground

Table 7. LDO1/LDO2 connector (J2)

Schematic label	Signal name	Description
J2-1	LDO1	LDO1 power supply output
J2-2	LDO2	LDO2 power supply output
J2-3	GND	ground

Table 8. VPRE connector (J3)

Schematic label	Signal name	Description
J3-1	VPRE	VPRE power supply output
J3-2	GND	ground

4.3.3.3 Debug connector (J29)

Table 9. Debug connector (J29)

Schematic label	Signal name	Description
J29-1	FOUT	frequency synchronization output
J29-2	FIN	frequency synchronization input
J29-3	PGOOD	power GOOD
J29-4	n.c.	not connected
J29-5	INTb	interrupt, active LOW
J29-6	n.c.	not connected
J29-7	RSTB	reset, active LOW
J29-8	n.c.	not connected
J29-9	n.c.	not connected
J29-10	n.c.	not connected
J29-11	AMUX	analog multiplexer
J29-12	n.c.	not connected
J29-13	VDDIO_EXT	VDDIO external reference
J29-14	PSYNC	power synchronization
J29-15	VDDIO	VDDIO used by VR5500
J29-16	WAKE2_IN	WAKE2 input
J29-17	n.c.	not connected
J29-18	VSUP	VSUP power supply
J29-19	n.c.	not connected
J29-20	GND	ground

4.3.3.4 Program connector (J30)

Table 10. Program connector (J30)

Schematic label	Signal name	Description
J30-1	WAKE1	WAKE1 input
J30-2	n.c.	not connected
J30-3	VDDI2C	VDDI2C voltage
J30-4	n.c.	not connected
J30-5	I2C_SDA	I ² C-bus serial data
J30-6	n.c.	not connected
J30-7	I2C_SCL	I ² C-bus serial clock
J30-8	n.c.	not connected
J30-9	n.c.	not connected
J30-10	n.c.	not connected
J30-11	DBG	connected to pin DBG
J30-12	GND	ground
J30-13	n.c.	not connected
J30-14	GND	ground
J30-15	GND	ground
J30-16	VSUP	connected to VSUP pin

4.3.4 Test points

The following test points provide access to various signals to and from the board.

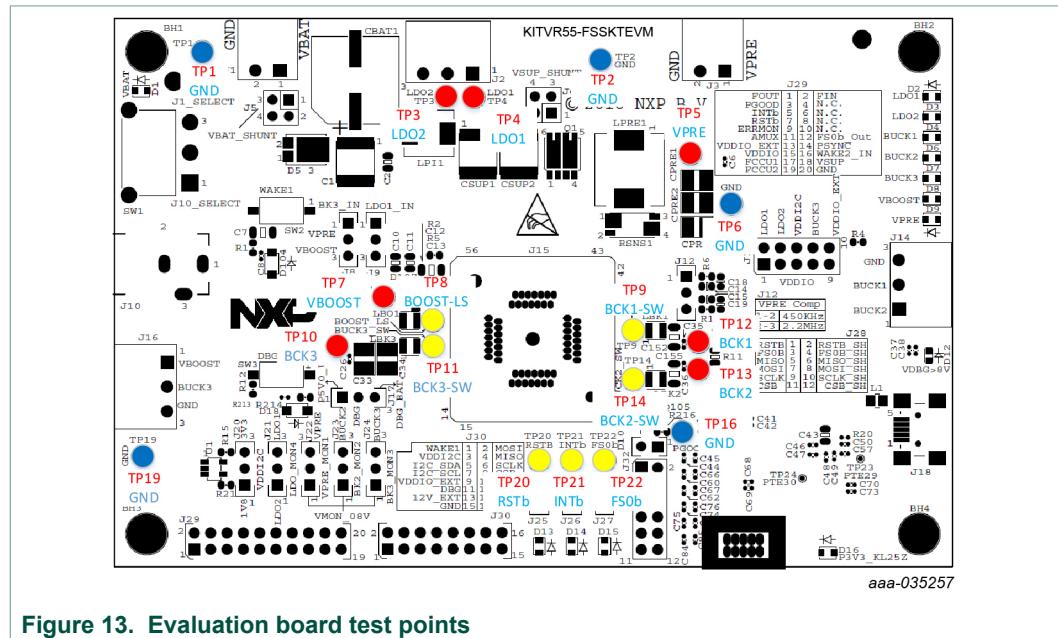


Table 11. Evaluation board test point descriptions

Test point name	Signal name	Description
TP1	GND	ground
TP2	GND	ground
TP3	LDO2	LDO2 regulator output
TP4	LDO1	LDO1 regulator output
TP5	VPRE	VPRE DC-to-DC regulator output
TP6	GND	ground
TP7	VBOOST	VBOOST DC-to-DC output
TP8	BOOST_LS	VBOOST low-side switcher
TP9	BUCK1_SW	BUCK1 switcher
TP10	BUCK3	BUCK3 DC-to-DC regulator output
TP11	BUCK3_SW	BUCK3 switcher
TP12	BUCK1	BUCK1 DC-to-DC regulator output
TP13	BUCK2	BUCK2 DC-to-DC regulator output
TP14	BUCK2_SW	BUCK2 switcher
TP16	GND	ground
TP19	GND	ground
TP20	RSTB	reset
TP21	INTb	interruption
TP22	n.c.	not connected

4.3.5 Jumpers

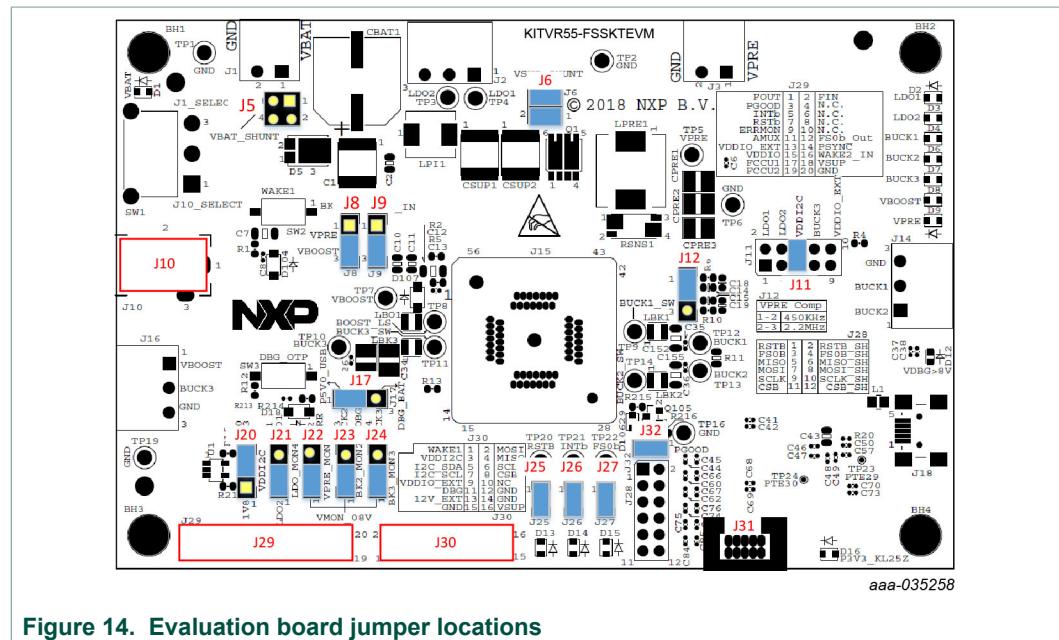
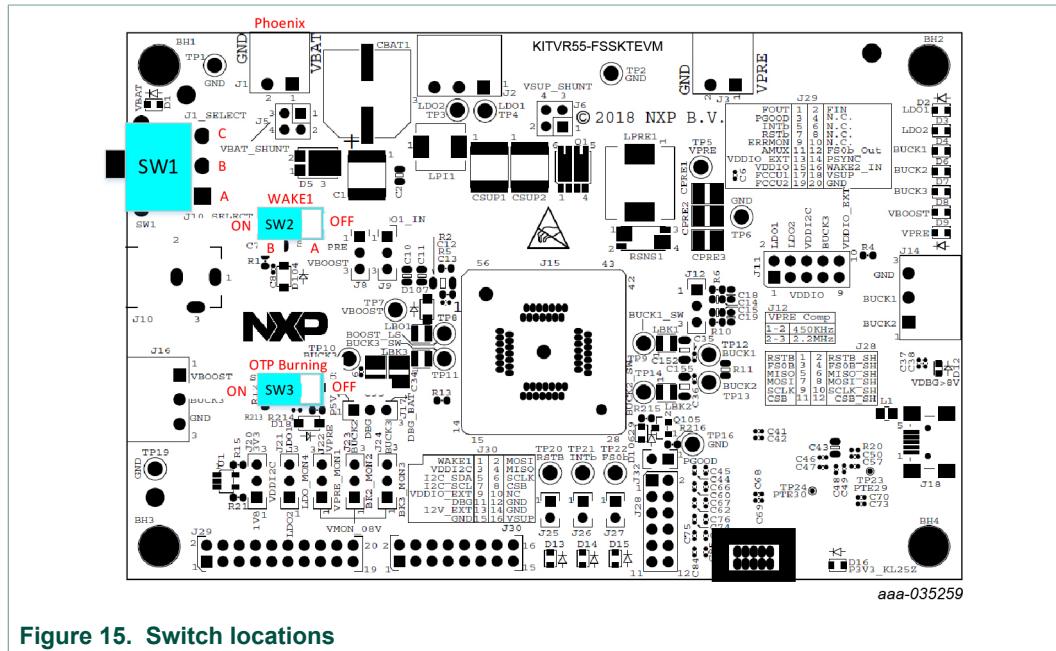



Figure 14. Evaluation board jumper locations

Table 12. Evaluation board jumper descriptions

Name	Function	Pin number	Jumper/pin function
J5	V _{BAT} shunt	1-2	shunt switch SW1 for current > 5.0 A
		3-4	shunt switch SW1 for current > 5.0 A
J6	V _{SUP} shunt	1-2	for current measurement (insert amperemeter)
		3-4	for current measurement (insert amperemeter)
J8	BUCK3 input	1-2	BUCK_INQ tied to VPRE
		2-3	BUCK_INQ tied to VBOOST
J9	LDO1 input	1-2	LDO1_IN connected to VPRE
		2-3	LDO1_IN connected to VBOOST
J10	V _{BAT} Jack	Jack	used for V _{BAT} supply using Jack connector
J11	VDDIO selection	1-2	VDDIO tied to LDO1
		3-4	VDDIO tied to LDO2
		5-6	VDDIO tied to VDDI2C (provided by external regulators)
		7-8	VDDIO tied to BUCK3
		9-10	VDDIO tied to VDDIO external
J12	VPRE compensation network selection	1-2	450 kHz VPRE compensation network
		2-3	2.25 MHz VPRE compensation network
J17	debug	1-2	pin DBG tied to P5V0_USB (5.0 V provided by USB connector)
		2-3	pin DBG tied to V _{BAT} (through external protection); do not use for OTP burning
J20	VDDI2C_SEL	1-2	external regulator output 1.8 V
		2-3	external regulator output 3.3 V
J21	n.c.	1-2	n.c.
		2-3	n.c.
J22	VMON1	1-2	VMON1 tied to 0.8 V
		2-3	VMON1 tied to VPRE
J23	n.c.	1-2	n.c.
		2-3	n.c.
J24	n.c.	1-2	n.c.
		2-3	n.c.
J25	RSTB	1-2	reset LED; enabled when jumper is plugged
J26	INTb	1-2	interrupt LED; enabled when jumper is plugged
J27	n.c.	1-2	n.c.
J29	—	—	—
J30	—	—	—
J31	—	—	use only during board manufacturing
J32	PGOOD	1-2	PGOOD LED; enabled when jumper is plugged

4.3.6 Switches

Table 13. SW3

Position	Function	Description
RIGHT	OTP programming off	OTP burning not possible
LEFT	OTP programming on	8.0 V on DBG pin allows OTP burning (blue LED turns on to indicate this state)

Table 14. SW2

Position	Function	Description
OFF	WAKE1 open	WAKE1 pin not connected to V _{SUP}
ON	WAKE1 closed	WAKE1 pin connected to V _{SUP}

Table 15. SW1

Position	Function	Description
TOP	V_{BAT} on	V_{BAT} from J1
MIDDLE	V_{BAT} off	board not supplied
BOTTOM	V_{BAT} on	V_{BAT} from J10

4.4 Schematic, board layout and bill of materials

The schematic, board layout and bill of materials for the KITVR55-FSSKTEVM evaluation board are available at <http://www.nxp.com/KITVR55-FSSKTEVM>.

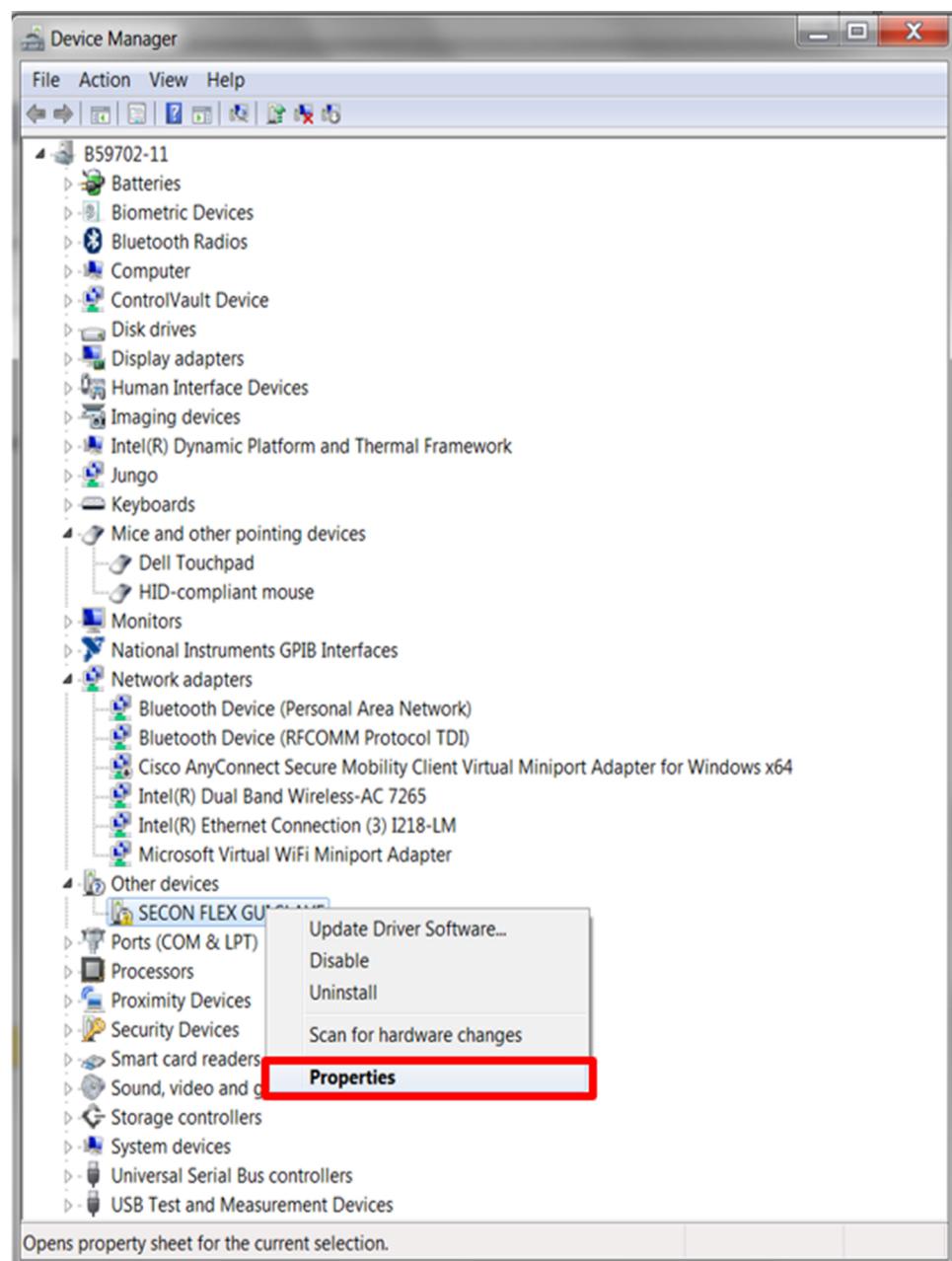
5 Installing and configuring software and tools

This development kit uses FlexGUI software. FlexGUI software is based on Java JRE.

Preparing the Windows PC workstation consists of three steps.

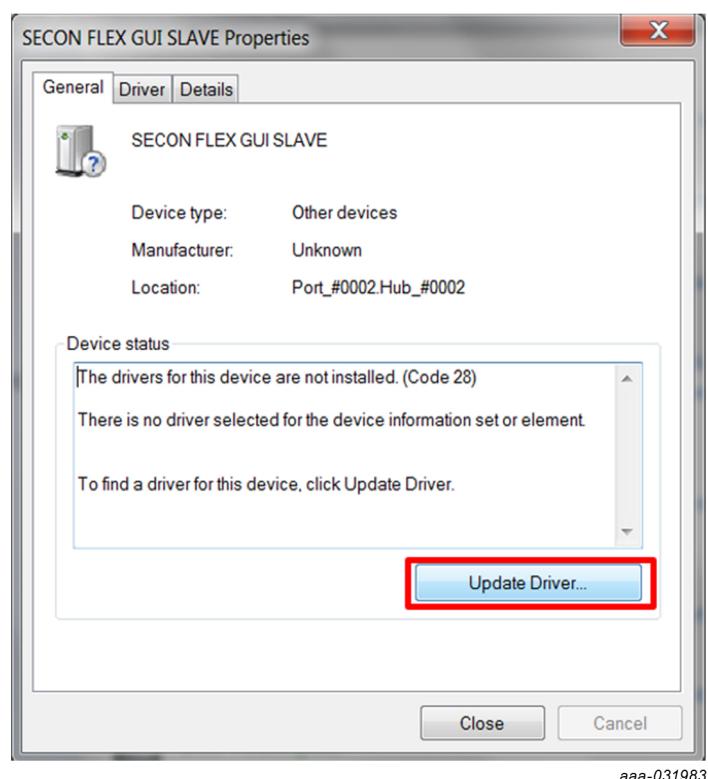
1. Install the appropriate Java SE Runtime Environment (JRE).
2. Install Windows 7 FlexGUI driver.
3. Install FlexGUI software package.

5.1 Installing the Java JRE

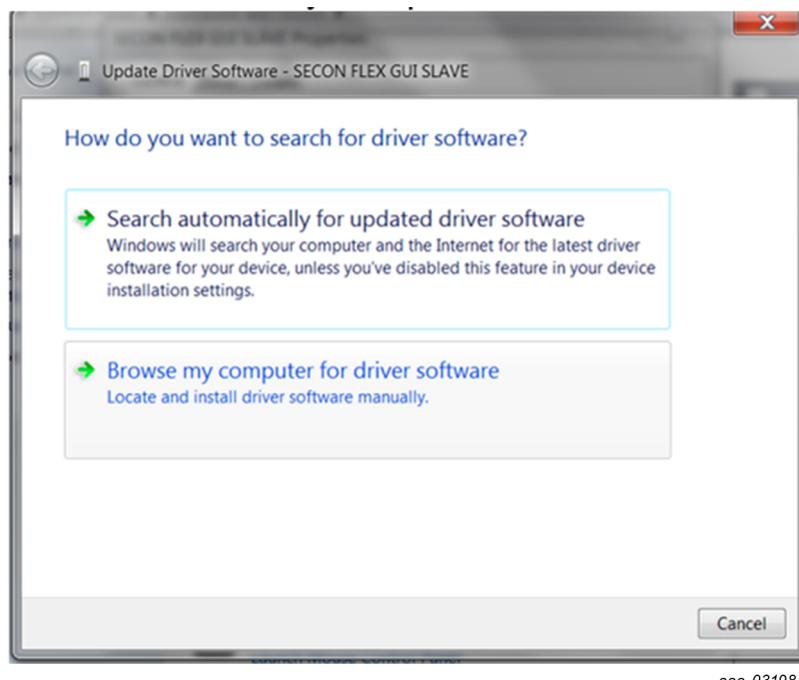

1. Download Java JRE (Java SE Runtime Environment), available at <http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html> (8u162 or newer).
2. Open the installer and follow the installation instructions.
3. Following the successful installation, restart the computer.

5.2 Installing Windows 7 FlexGUI driver

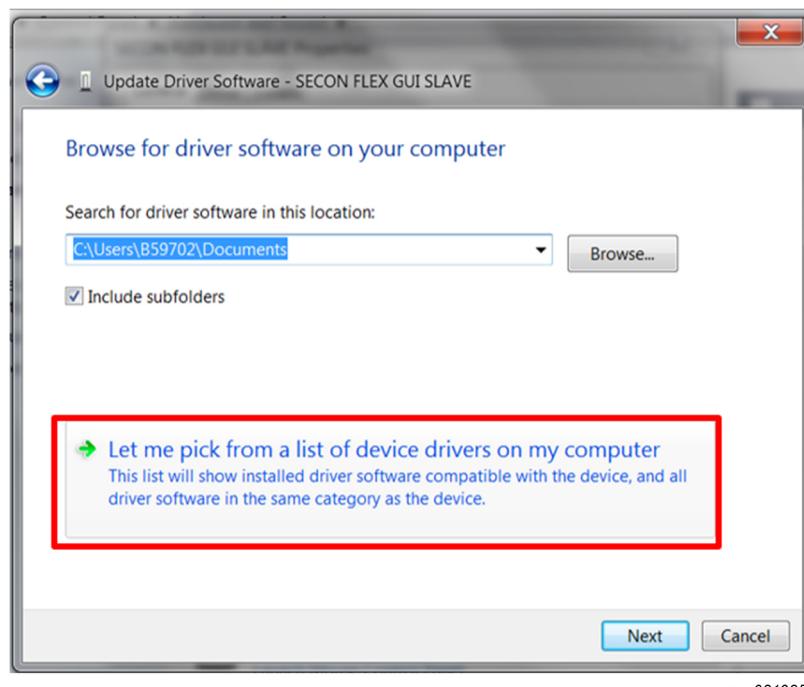
On Windows 7 PCs, a virtual COM port installation is required. Install the Windows 7 FlexGUI driver using the following procedure.


Note: On Windows 10, it is not necessary to install virtual com port as Windows 10 uses a generic COM port driver.

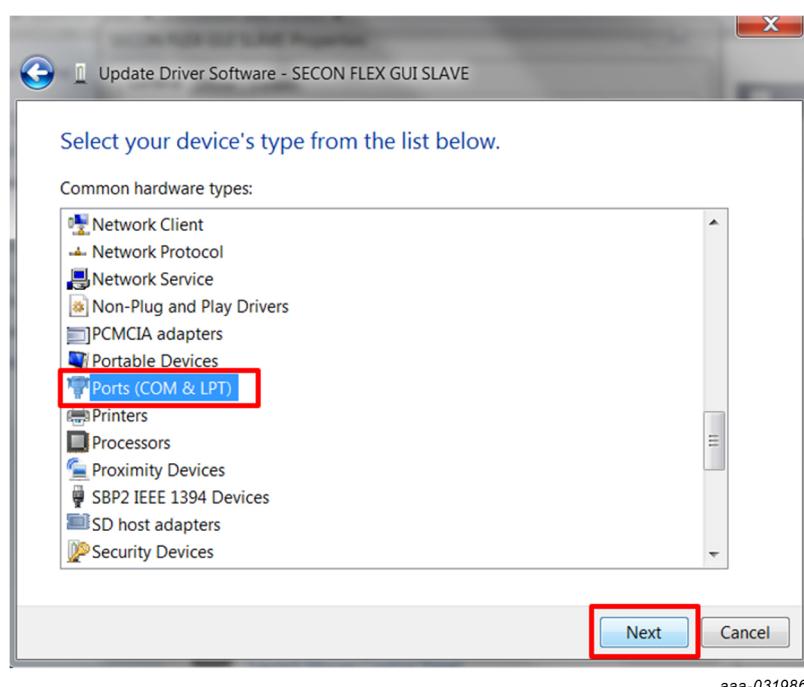
1. Connect the kit to the computer as described in [Section 6](#)
2. On the Windows PC, open the **Device Manager**.
3. In the **Device Manager** window, right-click on **SECON FLEX GUI SLAVE**, and then select **Properties**.


aaa-031982

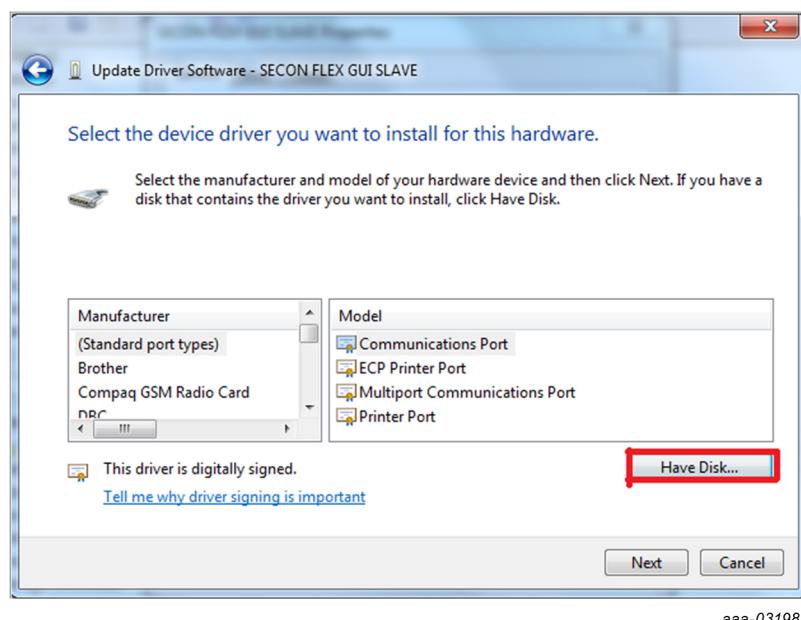
4. In the **SECON FLEX GUI SLAVE Properties** window, click **Update Driver**.


aaa-031983

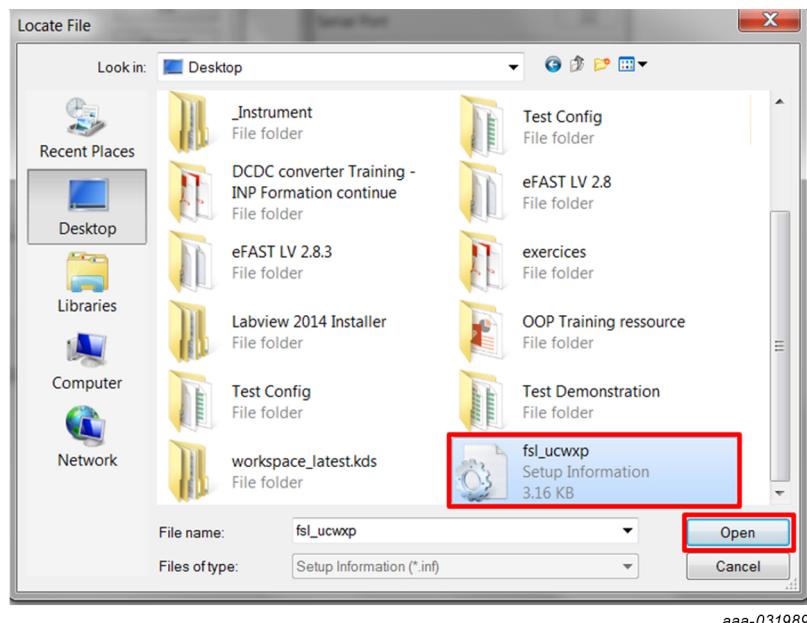
5. in the **Update Software Driver** window, select **Browse my computer for driver software**.

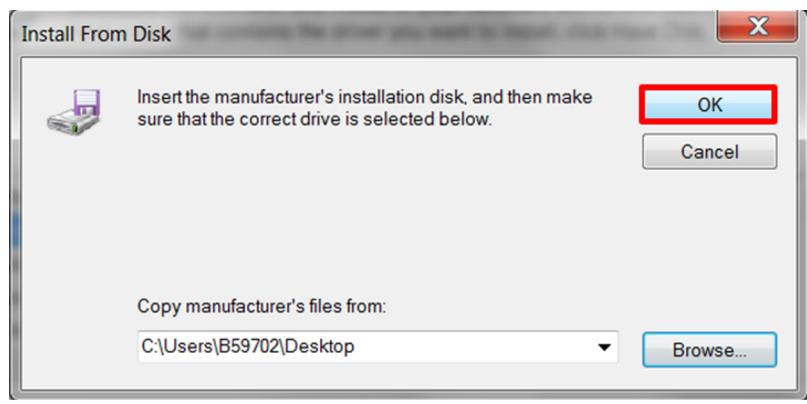


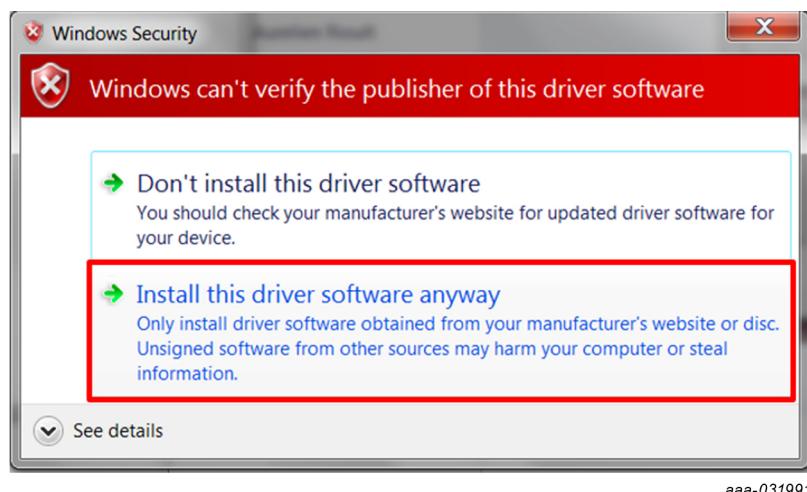
aaa-031984

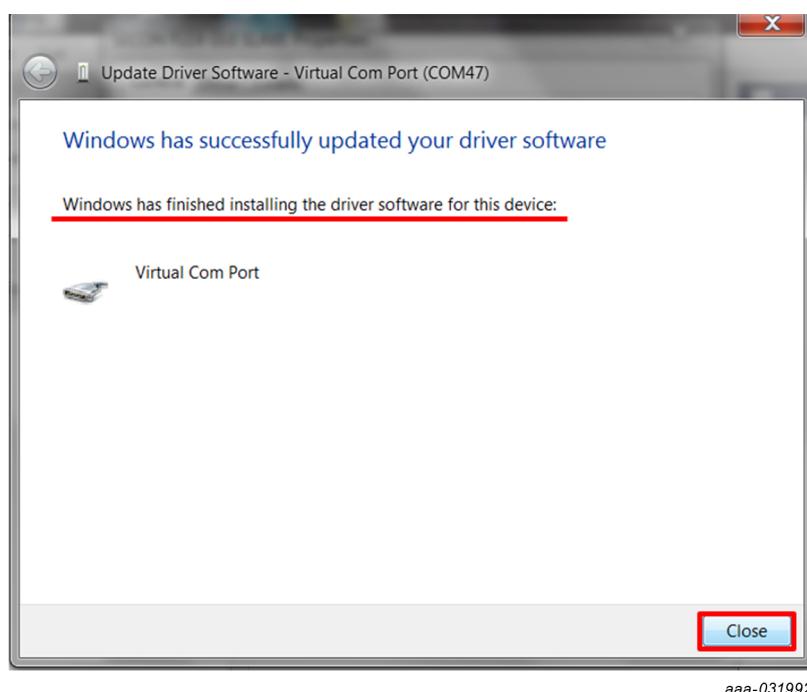

6. Select **Let me pick from a list of device drivers on my computer**, and then click **Next**.

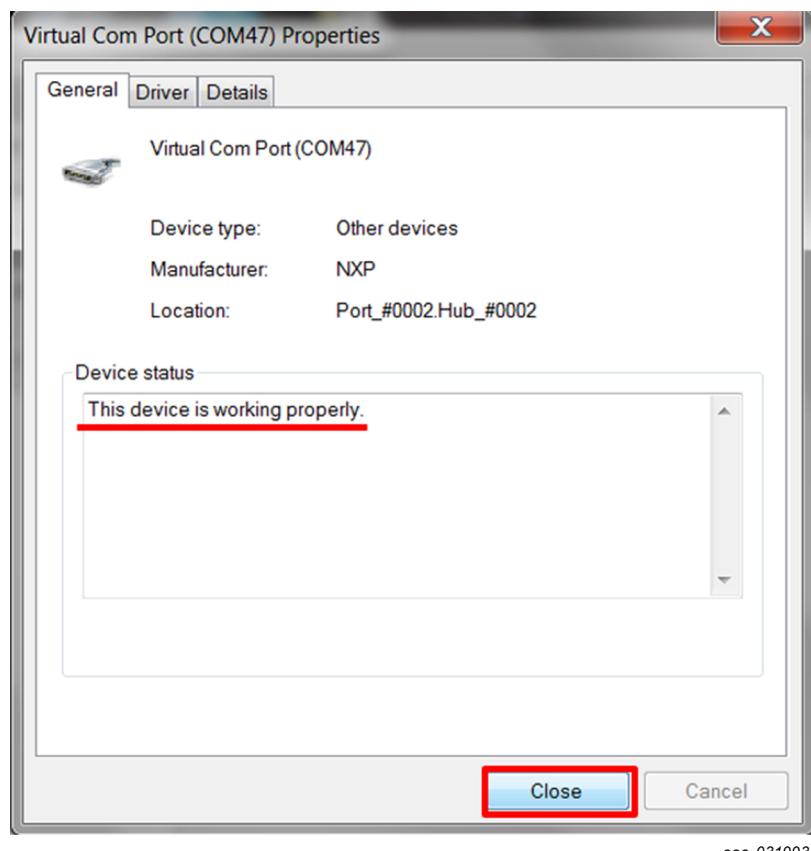

7. Select **Ports (COM & LPT)** from the list, and then click **Next**.

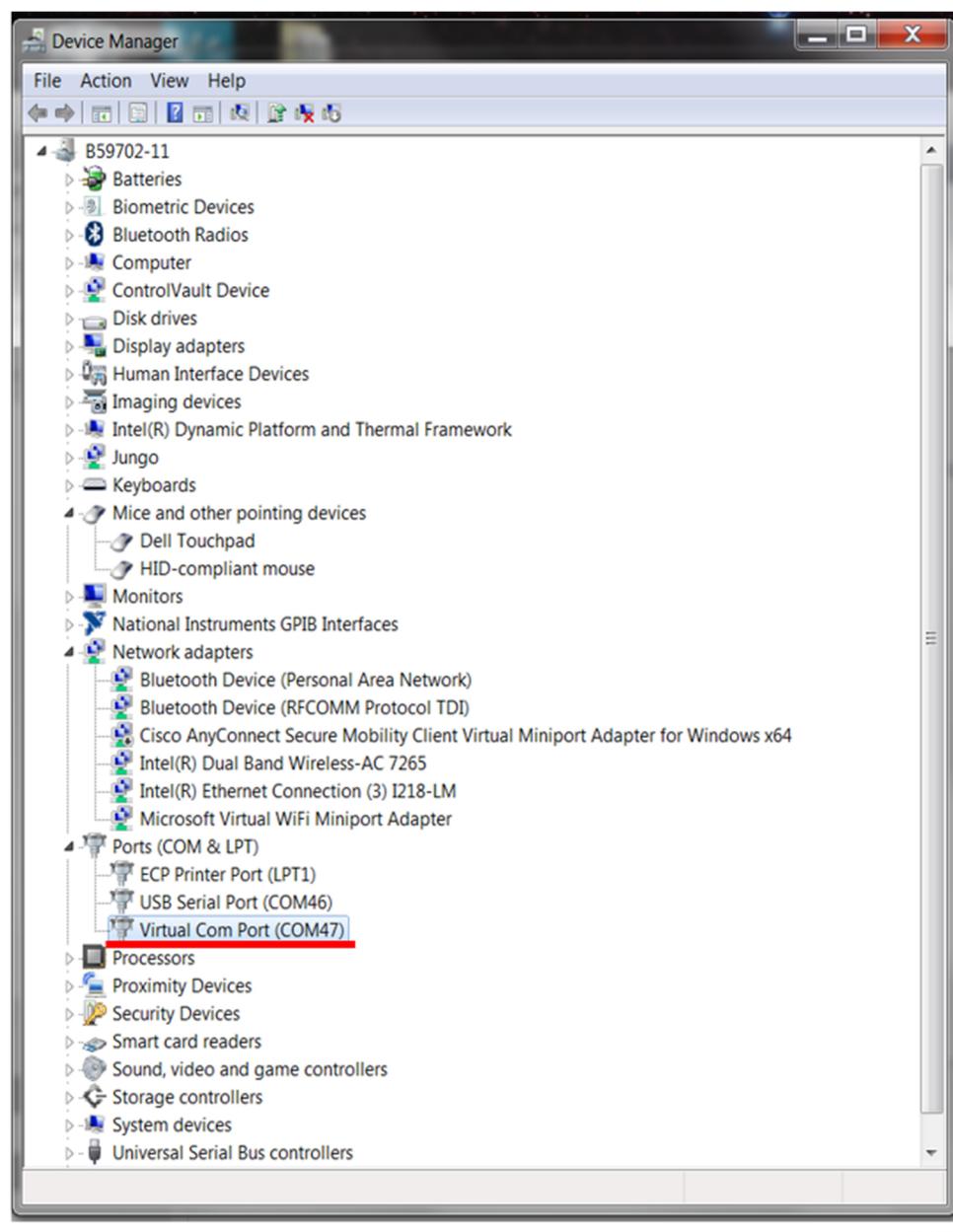

8. Click **Have Disk**.


9. Click **Browse**.


10. In the **Locate File** window, locate and select **fsl_ucwxp**, and then click **Open**.


11. In the **Install from Disk** window, click **OK**.


12. If prompted, in the **Windows Security** window, click **Select this driver software anyway**.


13. Close the window when the installation is complete.

14. In the **Virtual Com Port Properties** window, verify that the device is working properly, and then click **Close**.

The Virtual Com Port appears in the Device Manager window.

aaa-031994

5.3 Installing FlexGUI software package

The FlexGUI software installation requires only extracting the zip file in a desired location.

1. If necessary, install the Java JRE and Windows 7 FlexGUI driver.
2. Download the latest FlexGUI (32-bit or 64-bit) version, available at <http://www.nxp.com/KITVR55-FSSKTEVM>.
3. Run the flexgui-app-vr5500-fs5502.exe, install the FlexGUI with step by step guidance.

6 Configuring the hardware for startup

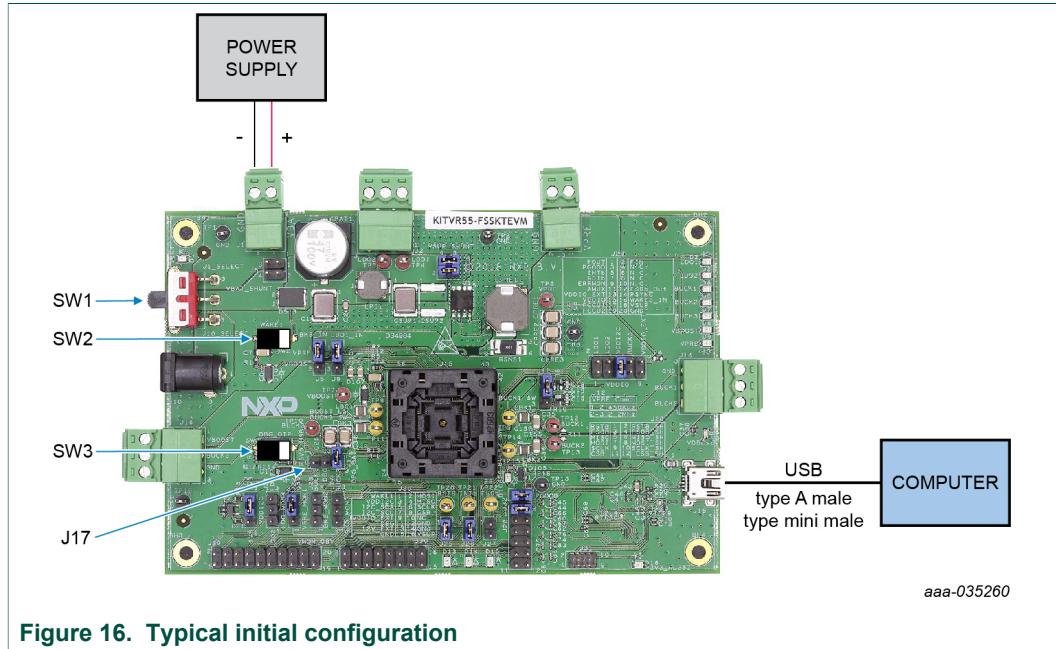


Figure 16. Typical initial configuration

Figure 16 presents a typical hardware configuration incorporating the development board, power supply, and Windows PC workstation.

To configure the hardware and workstation as illustrated in Figure 16, complete the following procedure:

1. Install jumpers for the configuration.

Table 16. Jumper configuration

Jumper	Configuration
J17	connect 1-2 (connect 5.0 V on DBG pin from the USB)

2. Configure switches for the configuration

Table 17. Switch configuration

Switch	Configuration
SW1	middle position (VBAT off)
SW2	open (WAKE1)
SW3	open (OTP programming off)

3. Connect the Windows PC USB port to the KITVR55-FSSKTEVM development board using the provided USB 2.0 cable.

Set the DC power supply to 12 V and current limit to 1.0 A. With power turned off, attach the DC power supply positive and negative output to KITVR55-FSSKTEVM V_{BAT} Phoenix connector (J1).

4. Turn on the power supply.
5. Close SW2.

Note: At this step, the product is in debug mode and all regulators are turned off. The user can then power up with OTP configuration or configure the mirror registers before power up. Power up is effective as soon as J17 jumper is removed.

7 Using the KITVR55-FSSKTEVM evaluation board

This section summarizes the overall setup. Detailed description is provided in the following sections.

Before starting the process, choose the mode you want to run the device.

- In Normal mode, the configuration comes from OTP fuses.
- In Debug mode, you can either use the current configuration from OTP fuse, if any, or use the OTP emulation mode to write in the mirror register.

The Normal mode or Debug mode is defined at startup depending on the DBG pin level.

- Normal mode is set by tying DBG to ground
- Debug mode is set by setting DBG voltage to 5.0 V

In OTP emulation, you can overwrite the mirror registers from a given OTP fuse configuration. See [Section 4.2.1](#) and [Section 8.3](#) to define your configuration.

In OTP fuse configuration, use the configuration fused in the OTP. So, if a valid OTP fuse configuration exists, then it is copied to the mirror registers at startup.

7.1 Generating the OTP configuration file

Define and generate your OTP configuration using the excel file *VR5500 OTP Config.xlsx*. This file allows configuring the device for parameters controlled by the main state machine and the fail-safe state machine.

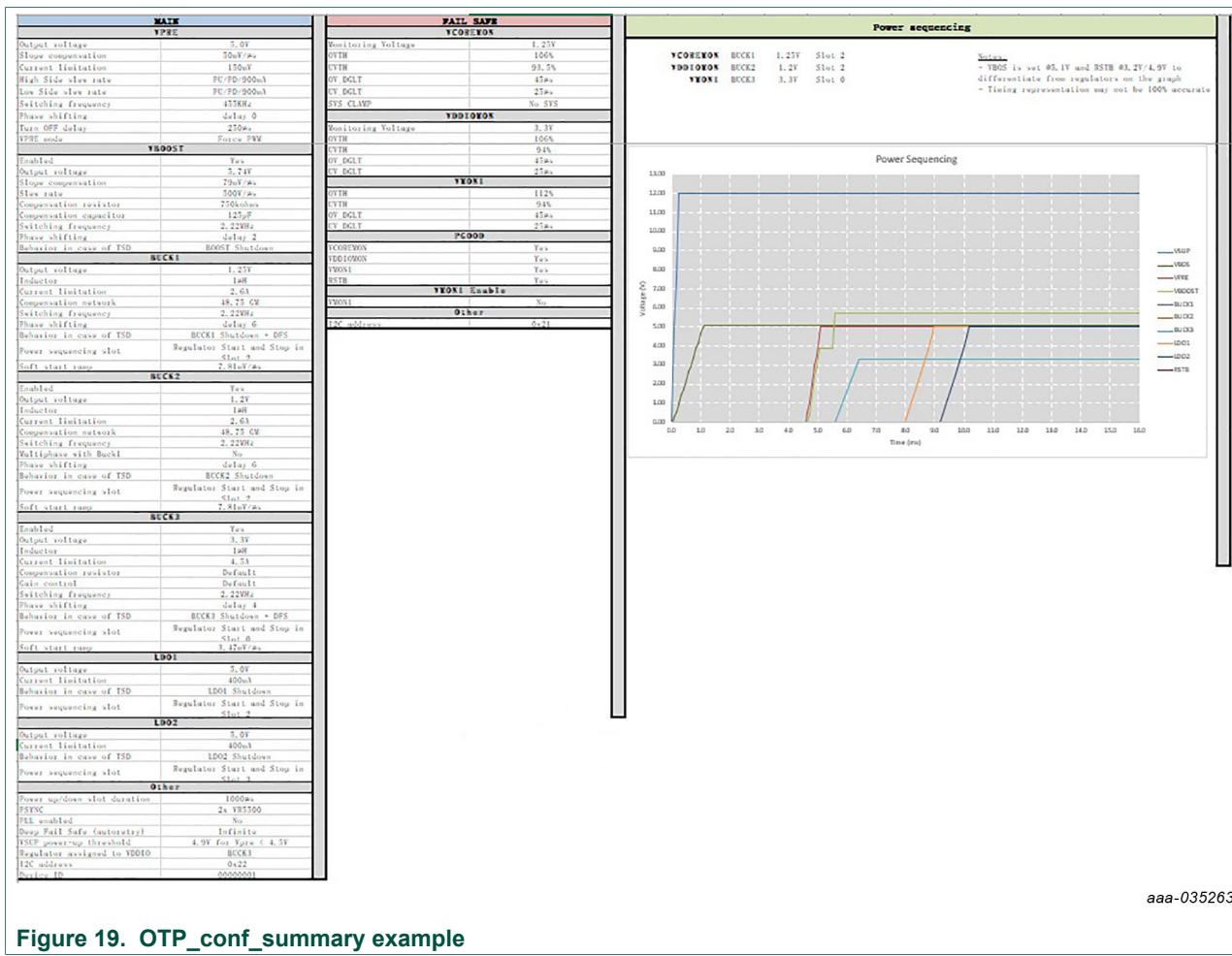
To generate the script:

1. Fill the **OTP_conf_main_reg** sheet

MAIN OTP REGISTERS															
Register Name	DDRES	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	Data_Bin	Data_Hex				
OTP_CFG_VPRE_1	14	-	-	-	-	-	VPRE[V5:0]	-	-	00001111	0x0F				
OTP_CFG_VPRE_2	15	-	-	-	-	-	00111- 3.3V	-	-	00001110	0x0E				
OTP_CFG_VPRE_3	16	0	0	-	-	-	VPRESC[5:0]	-	-	00001110	0x0E				
OTP_CFG_BOOST	17	-	-	-	VPREIILM[10]	VPRETOFF[1:0]	-	VPRESPLS[5:0]	VPRESRHS[10]	00110- 140mV/us	11010100	0xEC			
OTP_CFG_BOOST	18	000	000	000	11- 150mV	10- 40ns	Reserved	11- PUI/PDI/900mA	VBSTV[30]	00- PUPFD/130mA	11010100	0xEC			
OTP_CFG_BOOST	19	1- Enabled	-	-	VBSTTONTIME[1:0]	00- 60ns	-	-	-	1101- 75mV/us	00001101	0x0D			
OTP_CFG_BOOST	20	-	-	-	-	-	-	-	VBSTSC[4:0]	-	10001110	0x8E			
OTP_CFG_BUCK1	21	-	-	-	-	-	-	-	VBSTSCOMP[1:0]	0110- 75mV/us	10001110	0x8E			
OTP_CFG_BUCK1	22	-	-	-	-	-	-	-	VBSTILM[10]	01- 2A	00000111	0x07			
OTP_CFG_BUCK1	23	-	-	-	-	-	-	-	VB1M[2:0]	1000000- 1.25V	10001000	0x88			
OTP_CFG_BUCK2	24	-	-	-	-	-	-	-	VB1INDOPT[10]	00- 1uH	00001110	0x06			
OTP_CFG_BUCK2	25	-	-	-	-	-	-	-	VB1SWLIM[1:0]	11- 4.5A	0- Disabled	00001100	0x06		
OTP_CFG_BUCK3	26	-	-	-	-	-	-	-	VB2Y[7:0]	10110001- 1.0V	10110001	0x031			
OTP_CFG_BUCK3	27	-	-	-	-	-	-	-	VB2SWLIM[1:0]	100- 65.9m	VB3_CTRL_RC	VB3_CTRL_RM	10001010	0x8E	
OTP_CFG_BUCK3	28	-	-	-	-	-	-	-	VB3CTRL[10]	01- 2.5A	0- Default	0- Default	00001000	0x07	
OTP_CFG_BUCK3	29	-	-	-	-	-	-	-	VB3MULIOPH	-	0- Disabled	0- Disabled	00001000	0x07	
OTP_CFG_BUCK3	30	-	-	-	-	-	-	-	VB3SWLIM[10]	11- 4.5A	01010011	0x53			
OTP_CFG_LDO	31	-	-	-	-	-	-	-	LD02ILIM	LD02ILIM[2:0]	LD01ILIM	LD01ILIM[2:0]	01110110	0x76	
OTP_CFG_SEQ_1	32	-	-	-	-	-	-	-	VB2S[2:0]	0- 400mA	111- 5.0V	VB1S[2:0]	00001010	0x0A	
OTP_CFG_SEQ_2	33	-	-	-	-	-	-	-	LD02S[2:0]	001- Regulator Start and Stop in Slot 1	010- Regulator Start and Stop in Slot 2	01010110	0x0A		
OTP_CFG_SEQ_3	34	-	-	-	-	-	-	-	LD03S[2:0]	011- Regulator Does not Start (Enabled by SPI)	011- Regulator Start and Stop in Slot 3	00110111	0x3B		
OTP_CFG_SEQ_3	35	-	-	-	-	-	-	-	LD03S[2:0]	000- otp_SPARE[4:0]	000- Regulator Start and Stop in Slot 0	00000000	0x00		
OTP_CFG_CLOCK	36	-	-	-	-	-	-	-	VPRE_ph[2:0]	000- delay 0	100- divide by 44 - CLK2=455kHz	CLK_DIV2[2:0]	00000100	0x04	
OTP_CFG_CLOCK	37	-	-	-	-	-	-	-	BUCK1_ph[2:0]	111- 5.0V	110- delay 6	VBST_ph[2:0]	00110000	0x30	
OTP_CFG_CLOCK	38	-	-	-	-	-	-	-	BUCK3_ph[2:0]	000- no delay	BUCK2_ph[2:0]	000- no delay	00000000	0x00	
OTP_CFG_CLOCK	39	-	-	-	-	-	-	-	PLL_sel	011- delay 3	011- delay 3	CLK_DIV1[1:0]	00000011	0x03	
OTP_CFG_CLOCK	40	-	-	-	-	-	-	-	BUCK3_clk_sel	BUCK2_clk_sel	BUCK1_clk_sel	VBEST_clk_sel	00000000	0x00	
OTP_CFG_SM_1	41	-	-	-	-	-	-	-	0- CLK1	0- CLK1	0- CLK1	0- CLK1	00001010	0xA	
OTP_CFG_SM_2	42	-	-	-	-	-	-	-	0- BUCK1Shutdown	0- BUCK2Shutdown	0- BUCK3Shutdown	0- LDO1Shutdown	0- LDO2Shutdown	00000000	0x00
OTP_CFG_VSUP_U	43	-	-	-	-	-	-	-	VPRE_ofl_dly	Autoretry_infinite	Autoretry_en	PSYNC_CFG	PSYNC_EN	00001100	0x0C
OTP_CFG_I2C	44	-	-	-	-	-	-	-	0- 250us	1- Enabled	1- Enabled	0- 2xFS85	0- Disabled	00000000	0x00
OTP_CFG_I2C	45	-	-	-	-	-	-	-	otp_SPARE[2:0]	00000000	00000000	VSUPCFG	00000000	0x00	
OTP_CFG_I2C	46	-	-	-	-	-	-	-	-	-	-	0- 4.5V for Vpre < 4.5V	00000000	0x00	
OTP_CFG_I2C	47	-	-	-	-	-	-	-	00000000	00000000	00000000	I2CDEVADDR[3:0]	0000- Address C0	00000000	0x00
OTP_CFG_OV	48	-	-	-	-	-	-	-	-	-	-	VDDIO_REG_ASSIGN[2:0]	001- VPRE	00000001	0x01
OTP_CFG_DEVID	49	-	-	-	-	-	-	-	DeviceID[7:0]	00000001	00000001	00000001	00000001	0x01	
OTP_M_S1_CRC_LS	50	-	-	-	-	-	-	-	OTP_M_S1_CRC LSB[7:0]	Automatically filled in by Sidence IP	Automatically filled in by Sidence IP	00000000	0x00	00000000	0x00
OTP_M_S1_CRC_MS	51	-	-	-	-	-	-	-	OTP_M_S1_CRC MSB[7:0]	Automatically filled in by Sidence IP	Automatically filled in by Sidence IP	00000000	0x00	00000000	0x00

aaa-035261

Figure 17. OTP_conf_main_reg spreadsheet example


2. Fill the OTP_conf_failsafe_reg sheet

FAIL-SAFE OTP REGISTERS											
Register Name	ADDRESS	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	Data_Bin	Data_Hex
OTP_CFG_UV0_1	0A	-	-	-	-	-	VCORE_UV[7:0]	-	-	10001000	0x88
OTP_CFG_UV0_2	0B	-	-	-	-	-	10001000 - 1.25V	-	-	00110011	0x33
OTP_CFG_UV0_3	0C	-	-	-	-	-	VDDIO_UV[3:0]	-	-	00000000	0x00
OTP_CFG_UV0_4	0D	-	-	-	-	-	0011 - 106%	-	-	01111	0x0F
OTP_CFG_UV0_5	0E	-	-	-	-	-	0000 - No SVS	-	-	00	0x00
OTP_CFG_UV0_6	0F	-	-	-	-	-	VMON1UVTH[3:0]	-	-	00000000	0x00
OTP_CFG_UV0_7	10	-	-	-	-	-	VMON1UVTH[3:0]	-	-	00110100	0x34
OTP_CFG_UV0_8	11	-	-	-	-	-	VMON1UVTH[3:0]	-	-	00011	0x03
OTP_CFG_PGOOD	12	-	-	-	-	-	PGOOD_RSTB	-	-	00000000	0x00
OTP_CFG_ABIST1	13	-	-	-	-	-	otp_SPARE0[1:0]	-	-	01000111	0x47
OTP_CFG_ASIL	14	-	-	-	-	-	-	-	-	00000111	0x07
OTP_CFG_I2C	15	1	0	0	0	0	otp_SPARE1[2:0]	-	-	10000000	0x80
OTP_CFG_DGLT_DUR_1	16	-	-	-	-	-	otp_SPARE2[1:0]	VCORE_UV_DGLT[1:0]	VCORE_UV_DGLT[1:0]	00000000	0x00
OTP_CFG_DGLT_DUR_2	17	-	-	-	-	-	00	10 - 25us	1 - 45us	00101101	0x2D
OTP_FS_S1_CRC_LSB	18	-	-	-	-	-	otp_SPARE3[4:0]	VMON1_UV_DGLT[1:0]	VMON1_UV_DGLT[1:0]	00000000	0x00
OTP_FS_S1_CRC_MSB	19	-	-	-	-	-	00000	10 - 25us	1 - 45us	00000000	0x00

aaa-035262

Figure 18. OTP_conf_failsafe_reg spreadsheet example

3. See the OTP_conf_summary sheet to review the complete configuration (main and fail-safe)

aaa-035263

Figure 19. OTP_conf_summary example

4. Generate the script in **OTP_conf_file_generation** sheet

Once the configuration is ready, the user can generate the script file. Go to **OTP_conf_file_generation**, enter the path in the **File repository**, and then click **Write OTP File GUI**.

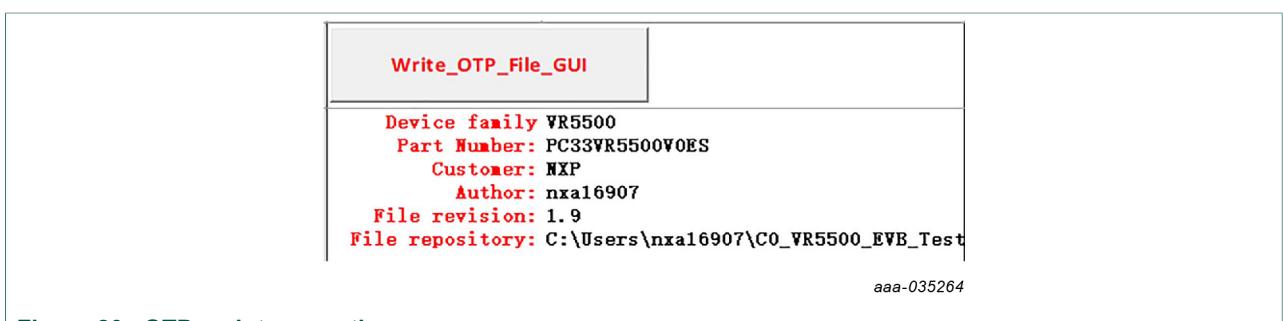


Figure 20. OTP script generation

7.2 Working in OTP emulation mode

At startup, the device always uses the content from the mirror register. This content can come from OTP fuse or from configuration written directly in the mirror register. OTP emulation means that the user can emulate the OTP writing in the mirror register. It allows trials before burning the OTP.

1. Configure the hardware; see [Section 6](#).
2. Launch the FlexGUI software.
3. Switch to Debug mode:
 - a. Place SW1 in TOP direction (V_{BAT} switched on).
 - b. Close SW2 (WAKE1).

While in Debug mode, all regulators are turned off.
4. Load the mirror registers to work in OTP emulation mode; see [Section 8.3](#).
5. Unplug jumper J17 1-2 to start the device with the mirror configuration setting.
 - a. If the mirror registers are filled (with a configuration using the Script editor), that configuration is used in the emulation session.
 - b. If the mirror registers are not filled (with a configuration using the Script editor), the currently programmed OTP fuse configuration is used, if it exists.
 - c. Otherwise, the mirror registers are not filled and the OTP fuse is not burned, and the device does not start up.
6. Use the FlexGUI software to evaluate the device configured; see [Section 8](#).

7.3 Programming the device with an OTP configuration

The device configuration can be changed three times (see [Section 4.2.1](#)). The programming steps are the same as the OTP emulation mode up to step 6.

Then, the user has to burn the part with FlexGUI; see [Section 8.4.7](#). Follow the instructions on the screen to proceed.

8 Using FlexGUI

To follow the steps in this section, make sure that the board is connected using the appropriate hardware configuration (see [Section 7.2](#)).

Note: *It is recommended to use the latest version of FlexGUI.*

8.1 Starting the FlexGUI application

After launching the FlexGUI, the FlexGUI launcher displays available kits.

Select I²C-bus as communication bus on the launcher page.

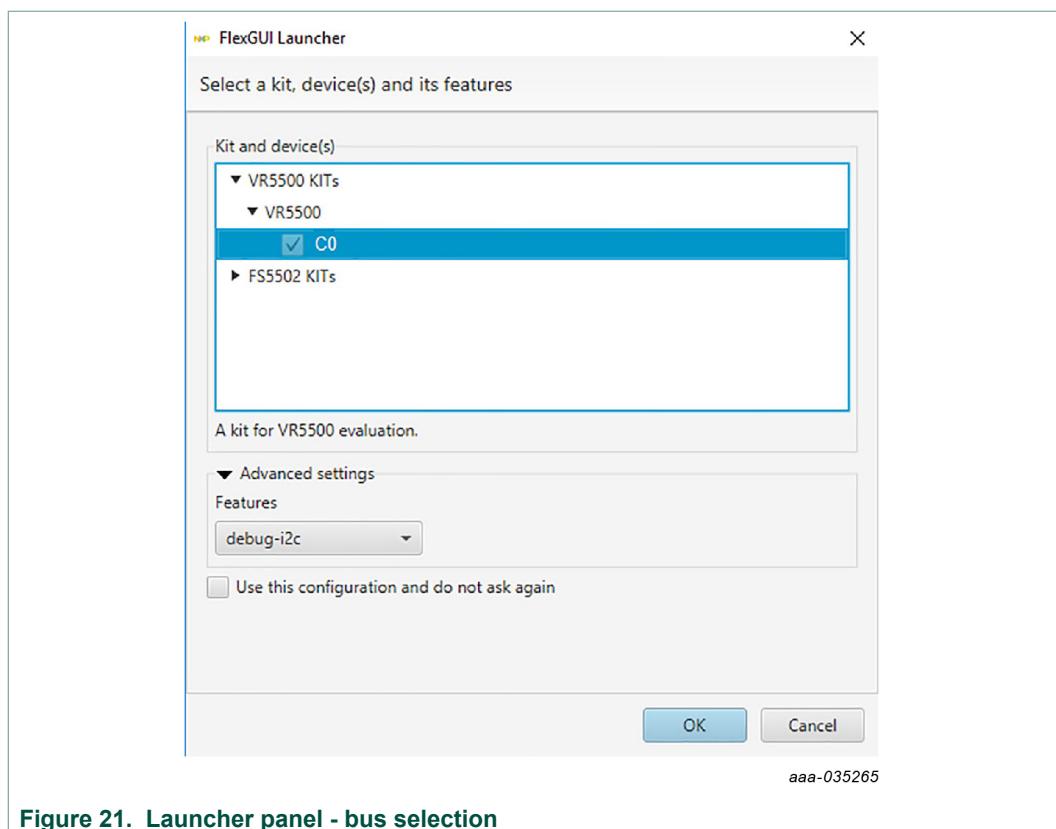


Figure 21. Launcher panel - bus selection

When the configuration is selected, click **OK**.

8.2 Establishing the connection between FlexGUI and the hardware

The board must be connected to the USB before establishing a connection.

- Click **Search** to detect the COM port of the board.
- Click **Start** to enable the connection.

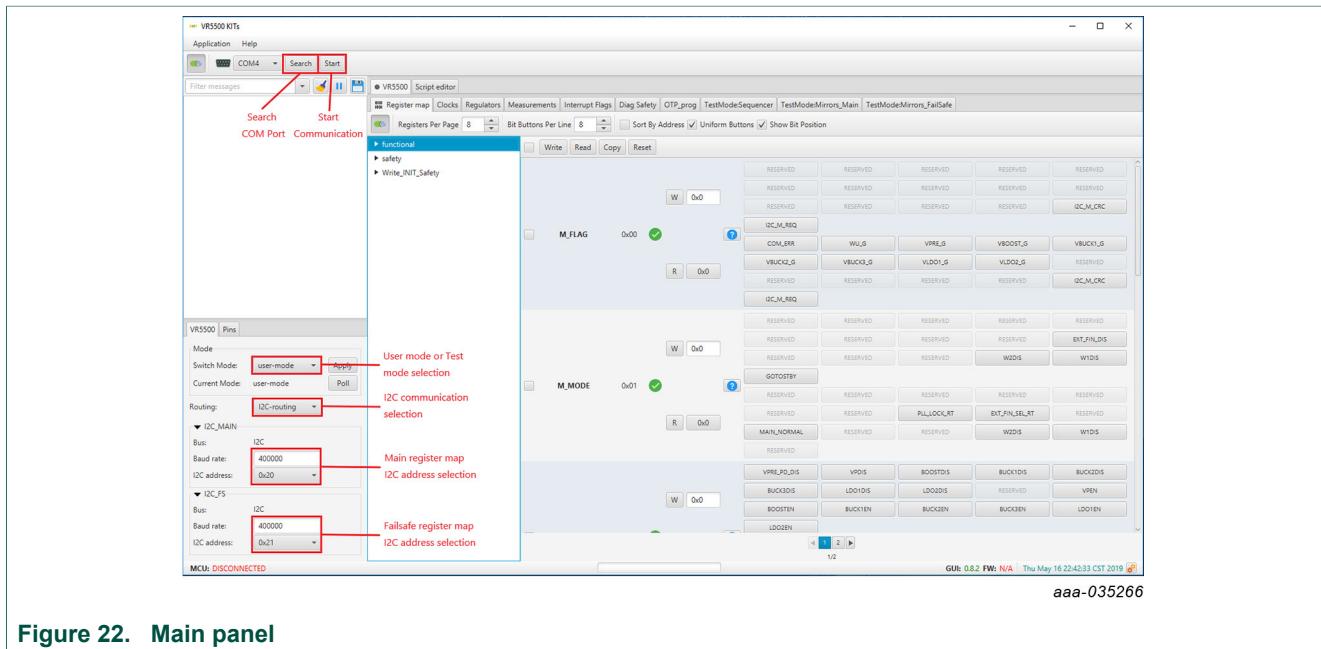


Figure 22. Main panel

Figure 22 shows the mode selection. At first launch, the FlexGUI starts in User mode. The user can then decide to switch to Test mode using the Switch mode drop-down list followed by clicking **Apply**.

The **GUI-Device Status** field checks the connection from MCU to the device. The **ONLINE** status indicates a good connection, while **ERROR** status indicates an issue (for example V_{SUP} is not provided to the device).

Select I^2C -bus as communication bus.

It is also possible to change the clock frequency using this panel.

Note that in the case of I^2C -bus, most of the time, the default address used by the device are 0x20 for main and 0x21 for the fail-safe.

The I^2C -bus address is managed differently in Debug and Normal mode

- Debug mode:
 - I^2C -bus address when debug mode pin is set to 5.0 V is 0x20 for main and 0x21 for fail-safe.
 - The user can change this address in the mirror register. The new address is taken into account only after debug pin is released to 0 V.
- Normal mode:
 - The address is burned in the OTP.

The user can read in which mode the device is operating. It is also possible to switch from User mode to Test mode (and the opposite way).

The current operating mode is refreshed periodically by default at FlexGUI startup. This automatic refresh can be disabled by disabling Poll button as shown in Figure 23.

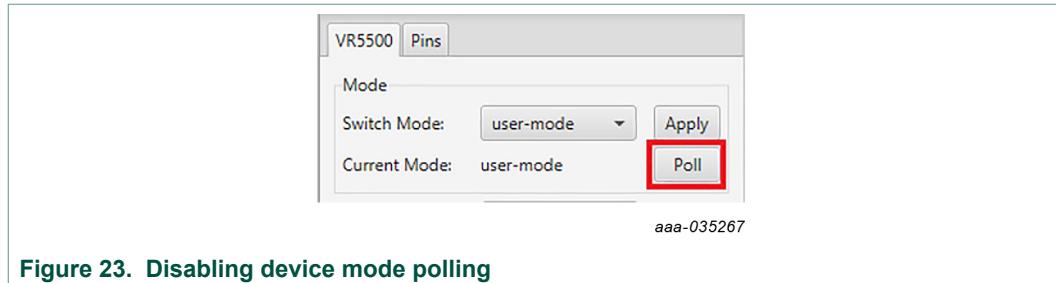


Figure 23. Disabling device mode polling

To move from one mode to the other, select the mode with switch mode drop-down button and click **Apply** to validate. Now, the current mode is updated at the condition that **Poll** button is enabled.

8.3 Working with the script editor

The register and OTP emulation can be configured with the script editor. It is useful to try various OTP configurations in Emulation mode.

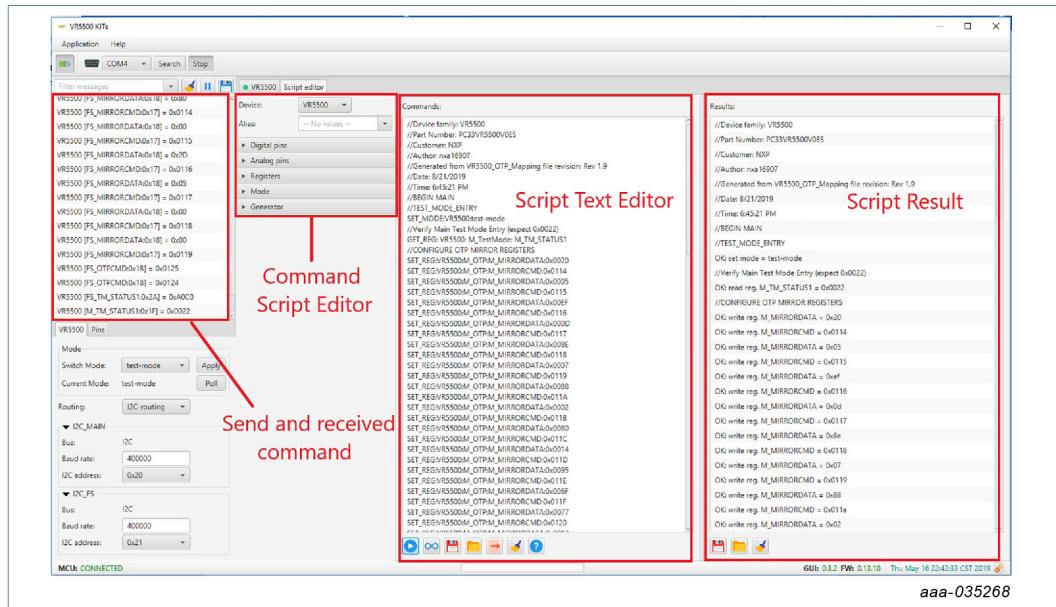


Figure 24. Script editor

The main subareas of this panel are:

- **Send and receive command:** displays a summary of commands sent and received from the device
- **Command script editor:** builds commands to be sent to the device
- **Script text editor:** sends a sequence of register configurations from a text file or from command edited directly in this area
- **Script results:** displays result status of each command sent to the device

8.3.1 Script text editor

Using script editor, you can execute any command either directly or from a file. It is also possible to save and modify a script. Using the brush symbol, it is possible to clean windows if needed.

All commands have to follow a specific syntax. The Help menu describes commands available in the script editor and their syntax.

This help page describes commands available in the script editor and their format.

List of commands

- **SET_REG**: sets value of a selected register.
- **READ_REG**: reads value of a selected register.
- **SET_DPIN**: sets value of a selected digital pin.
- **GET_DPIN**: gets value of a selected digital pin.
- **GET_APIN**: gets value of a selected analog pin. Returned value is in mV.
- **PAUSE**: shows a dialog with user defined message. The script is paused until the user confirms the dialog.
- **EXIT**: stops execution of the script.
- **SET_MODE**: sets device mode. List of modes depends on a device.

Command format

The following table describes command parameters. All parameters are mandatory.

	1st parameter	2nd parameter	3rd parameter	4th parameter	5th parameter
SET_REG	Device	Reg. set	Reg. name / Reg. address	Reg. value	-
GET_REG	Device	Reg. set	Reg. name / Reg. address	-	-
SET_DPIN	Device	Pin name	Dig. pin value	-	-
GET_DPIN	Device	Pin name	-	-	-
GET_APIN	Device	Pin name	-	-	-
PAUSE	Message	-	-	-	-
EXIT	-	-	-	-	-

Description of command parameters mentioned in the table above:

- **Device**: device name (alias used in application).
- **Reg. set**: register set name. Register sets allows to associate registers which have similar function.
- **Reg. name**: register name as defined in datasheet.
- **Reg. address**: register address in decimal or hexadecimal (with 0x prefix) format.
- **Reg. value**: register value in decimal or hexadecimal (with 0x prefix) format.
- **Pin name**: name of digital or analog pin as defined in device datasheet.
- **Dig. pin value**: value of digital pin. Allowed strings are 'low' and 'high'.
- **Message**: a message to be displayed in a dialog. It cannot contain ';' character, which is used as delimiter of parameters.
- **Mode**: name of a device mode.

[Figure 25](#) shows an example to build a command from the panel.

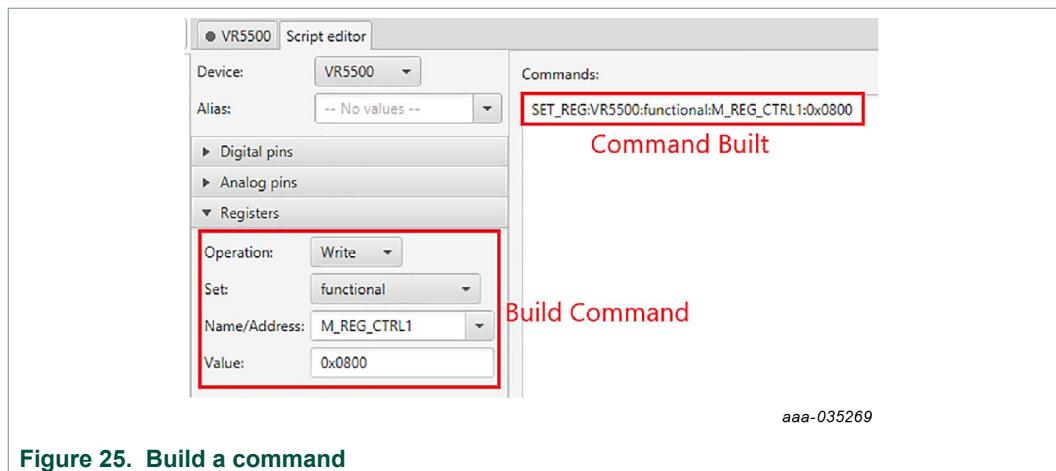


Figure 25. Build a command

The value 0x0800 is sent to the register M_REG_CTRL1 (BUCK2DIS). The user can then send it to the device by clicking the arrow; see [Figure 26](#).



Figure 26. Send script

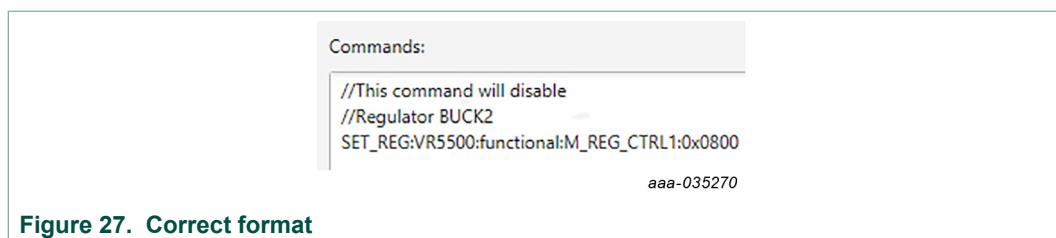


Figure 27. Correct format

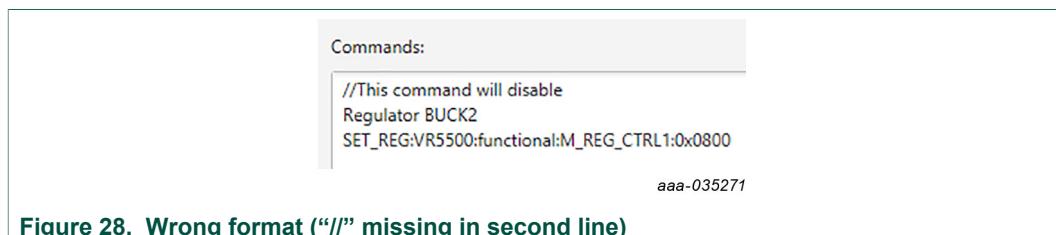


Figure 28. Wrong format ("// missing in second line)

8.4 Understanding the VR5500 workspace

The VR5500 workspace consists of several tabs, each dedicated to a specific aspect of device functionality or configuration.

- Register map
- Clocks
- Regulators
- Measurements
- Interrupt flags
- Diag safety
- OTP programming
- TestMode:Sequencer
- TestMode:Mirrors_Main and TestMode:Mirrors_FailSafe

8.4.1 Register map

All I²C-bus registers can be accessed in write and read mode using this tab.

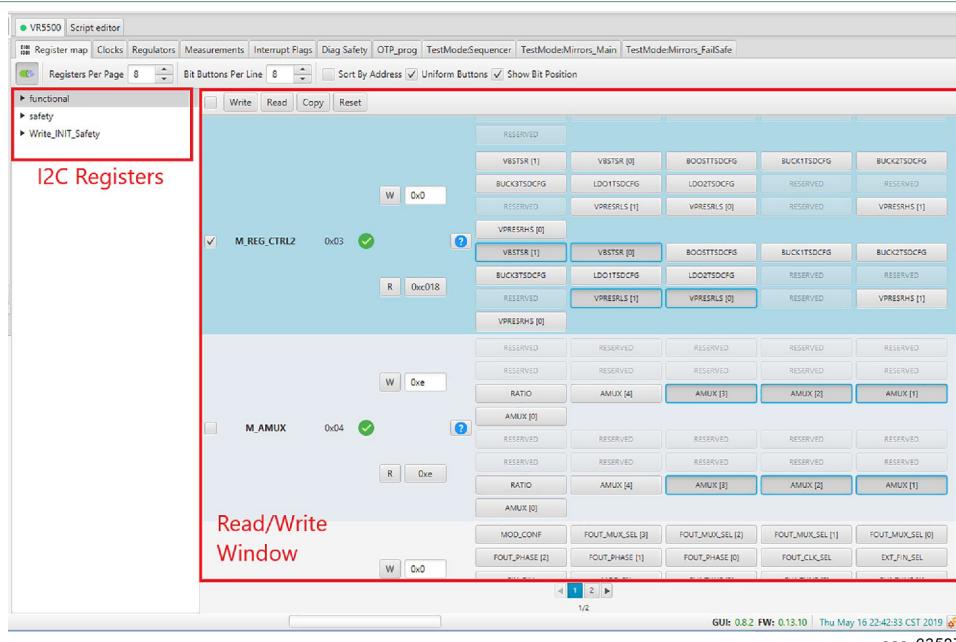


Figure 29. Register map

- **Register map:** allows access to functional register, safety register, and write init register which are accessible only during initialization phase
- **Read/write:** allows you to read/write any register either individually or by bank

8.4.2 Clocks

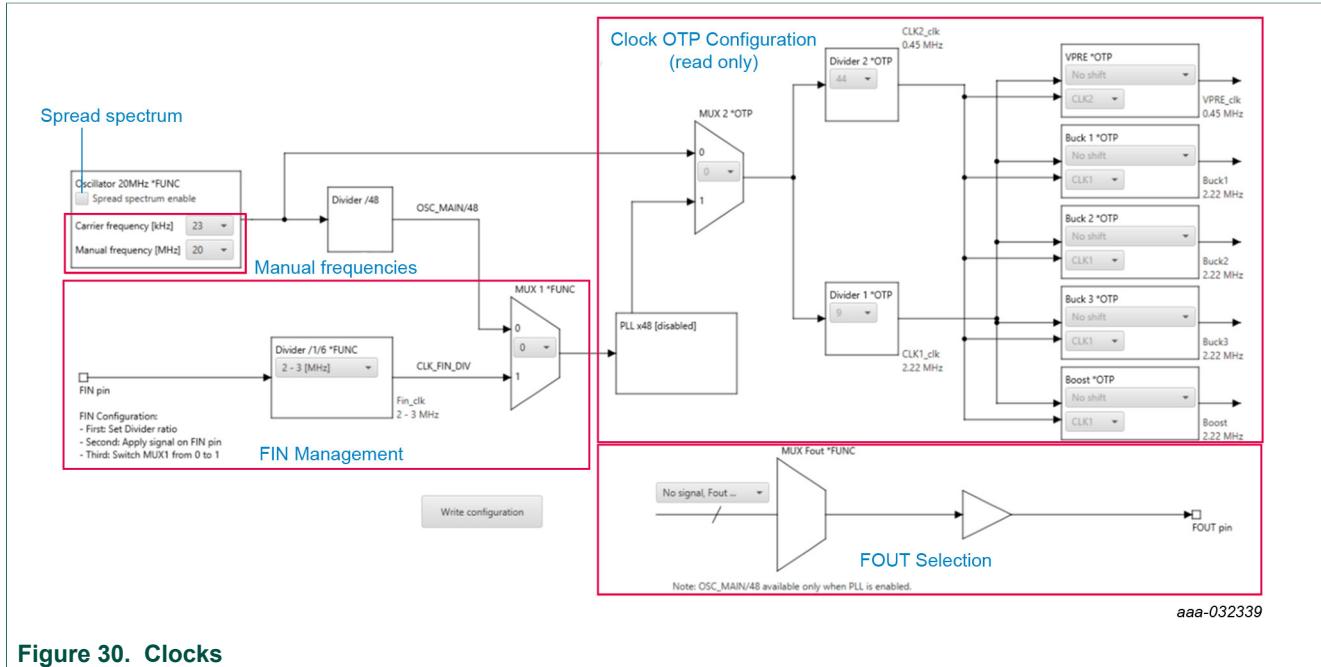


Figure 30. Clocks

This tab allows:

OTP:

- Read current OTP configuration (write operation is not possible). To display the accurate data, the device must operate in Test mode.

I²C-bus:

- Configure the device to work with FIN input
- Select the signal to apply on FOUT pin
- Play with manual frequencies and spread spectrum

8.4.3 Regulators

The regulator has two main areas:

- Low voltage (LV) regulators configuration
- VPRE compensation network calculation

Each regulator can either be enabled or disabled by I²C. The thermal shutdown behavior can be configured to either shutdown the regulator, or shutdown the regulator and transition to deep fail-safe. The write button applies to the entire table. The VPRE compensation network calculator helps to define the value for VPRE external compensation network.

Low Voltage Regulators

LV Buck1	LV Buck2
State in normal mode	Disable
Behavior in case of TSD	Regulator_Shutdown
LV Buck3	LDO1
State in normal mode	Disable
Behavior in case of TSD	Regulator_Shutdown
LDO2	VBOOST
State in normal mode	Disable
Behavior in case of TSD	Regulator_Shutdown

Write

VPRE compensation network calculation

VPRE [V]	
VPRE ILIM [mV]	
Switching Frequency [KHz]	
Rshunt [mOhm]	
Cout [uF]	
Lvpres [uH]	
Rcomp [KOhm]	N/A
Ccomp [nF]	N/A
Chf [pF]	N/A
Current limit [A]	N/A
Slope compensation [mV/us]	N/A

Calculate

aaa-032340

Figure 31. Regulators

8.4.4 Measurements

This tab enables two features:

- Read any of the AMUX signals over time
- Display regulator voltage summary

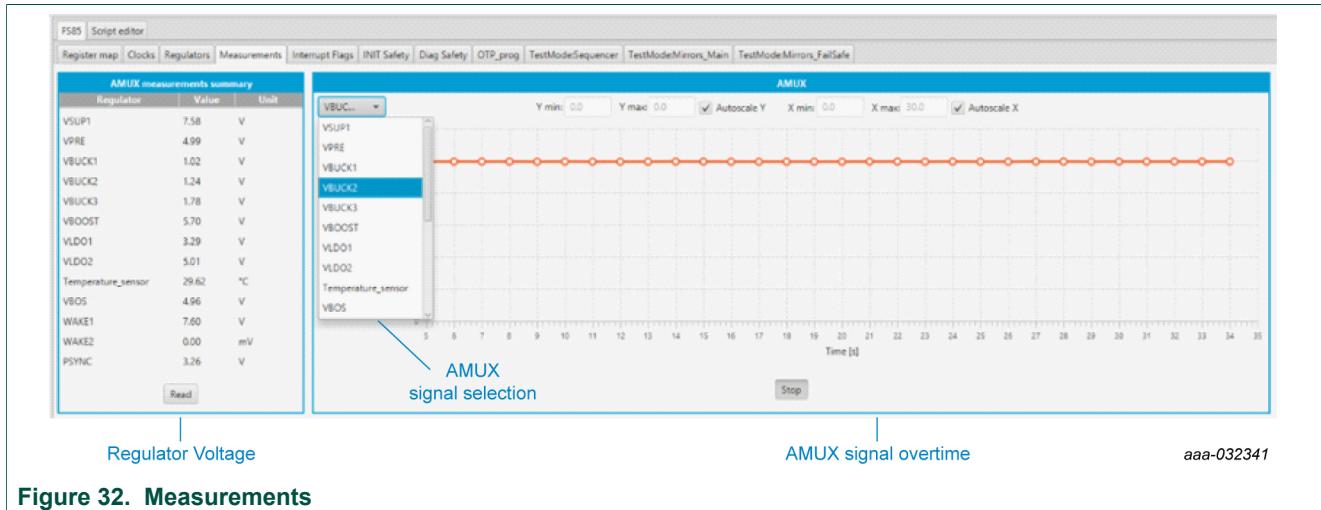


Figure 32. Measurements

8.4.5 Interrupt flags

This tab allows you to set or clear flags. It is also possible to mask the interruption.

Over/under-voltage				Over-temperature				
	Status	Clear	Mask		Status	Clear	Mask	
VSUP UVH	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VSUP UVL	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VSUP UV7	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VPRE UVH	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VPRE UVL	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VPRE FB_OV	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VBOS UVH	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VBOOST UVH	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked
VBOOST OV	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked			<input type="checkbox"/>	INT_not_masked

Over-current				Miscellaneous				
	Status	Clear	Mask		Status	Clear	Mask	
LDO1	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green			
LDO2	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green			
BUCK1	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green			
BUCK2	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green			
BUCK3	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green			
VBOOST	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Green			
VPRE	Green	<input type="checkbox"/>	<input type="checkbox"/>	INT_not_masked	Red	<input checked="" type="checkbox"/>	<input type="checkbox"/>	INT_not_masked

aaa-032342

Figure 33. Interrupt flags

8.4.6 Diag safety

This tab shows the safety-related status and flags.

Safe IO

Report PGOOD change	<input type="checkbox"/>	N/V
Report PGOOD event	<input type="checkbox"/>	N/V
Report PGOOD sense	<input type="checkbox"/>	N/V
External reset	<input type="checkbox"/>	N/V
RSTB driver	<input type="checkbox"/>	N/V
RSTB sense	<input type="checkbox"/>	N/V
RSTB event	<input type="checkbox"/>	N/V
RSTB diag	<input type="checkbox"/>	N/V
RSTB request	<input type="checkbox"/>	

Diag. Safety

I2C CRC status	<input type="checkbox"/>	N/V
I2C access status	<input type="checkbox"/>	N/V

INTB Mask

VMON1 OV/UV int. enable	<input type="checkbox"/>	N/V
VDDIO OV/UV int. enable	<input type="checkbox"/>	N/V
VCOREMON OV/UV int. enable	<input type="checkbox"/>	N/V

OV/UV status

VCOREMON OV	<input type="checkbox"/>	N/V
VCOREMON UV	<input type="checkbox"/>	N/V
VDDIO OV	<input type="checkbox"/>	N/V
VDDIO UV	<input type="checkbox"/>	N/V
VMON1 OV	<input type="checkbox"/>	N/V
VMON1 UV	<input type="checkbox"/>	N/V
FS DIG REF OV	<input type="checkbox"/>	N/V
FS OSC DRIFT	<input type="checkbox"/>	N/V

Flags and Status

Communication error	N/V
IO error	N/V
Voltage monitoring error	N/V
Test Mode Activation Status	N/V
Leave debug mode	<input type="checkbox"/>
Debug mode	N/V
OTP bit corruption	N/V
INIT register corruption	N/V
Fail-safe machine state	N/V

aaa-035273

Figure 34. Diag safety

8.4.7 OTP programming

This tab allows you to burn the OTP using a script generated by the excel file OTP configuration; see [Section 7.1](#).

Device Programming

Select Config Script: VR5500_C0 OTP_Burn.txt

Config Script: VR5500_C0 OTP_Burn.txt

Progress: All Passed

Status: Completed

Program Reset

Fuse Box Status (Main)

Programming Status

Boot Error	<input checked="" type="checkbox"/>
Prg Failed (WP)	<input checked="" type="checkbox"/>
VRR Check Tries	0
Max Prg Tries Exceeded	<input checked="" type="checkbox"/>
ECC (Two Errors)	<input checked="" type="checkbox"/>
ECC (One Error)	<input checked="" type="checkbox"/>
Error	<input checked="" type="checkbox"/>
Busy	<input checked="" type="checkbox"/>

Sector Flags

MTP Index	2
Write Protected (WP)	<input checked="" type="checkbox"/>
Boot Enable (BE)	<input checked="" type="checkbox"/>
CRC	

Fuse Box Status (Fail-Safe)

Programming Status

Boot Error	<input checked="" type="checkbox"/>
Prg Failed (WP)	<input checked="" type="checkbox"/>
VRR Check Tries	0
Max Prg Tries Exceeded	<input checked="" type="checkbox"/>
ECC (Two Errors)	<input checked="" type="checkbox"/>
ECC (One Error)	<input checked="" type="checkbox"/>
Error	<input checked="" type="checkbox"/>
Busy	<input checked="" type="checkbox"/>

Sector Flags

MTP Index	2
Write Protected (WP)	<input checked="" type="checkbox"/>
Boot Enable (BE)	<input checked="" type="checkbox"/>
CRC	

aaa-035274

Figure 35. OTP burning

To set up the hardware before OTP burning, see [Section 7.3](#).

See [Figure 35](#) and follow the steps:

- Browse and load the script file you want to burn. The program button is then available.
- Click **Program**.

FlexGUI pops up to turn on the 8.0 V, and then turns off. The blue LED on the board indicates that an 8.0 V voltage is available on the debug pin. This voltage is used only during the burning process, and should not be applied in any other configuration. At the end of the first OTP programming, the MTP index = 1, WP, BE, and CRC flags are green.

The sector flags area status, [Table 18](#) provides the state of main flags after a read. It helps to determine how many times the part was burned.

Table 18. OTP burning flag status

OTP burning step	BE	WP	CRC	MTP index
OTP is not burned; mirrors empty	red	red	red	1
OTP is not burned; mirrors filled	red	red	green	1
1	green	green	green	1
2	green	green	green	2
3	green	green	green	3

Example shown in [Figure 35](#) corresponds to the OTP burning step 2 from [Table 18](#).

To check if a valid OTP configuration is already burned, switch off V_{BAT} , then on, and start the device. The device starts with the OTP configuration.

8.4.8 TestMode:Sequencer

The sequencer allows you to display the slot configuration for the device. To be able to access this tab, the device has to be in Test mode. The configuration is read from mirror register. It is possible to modify it and update the mirror register.

As an example, the slot sequence is filled at startup with the content of OTP fuses. Then the user can decide to modify any of the configurations coming from the OTP fuse. All these actions are done with debug pin at 5.0 V and in Test mode.



Figure 36. TestMode:Sequencer

Use the drop-down button (see [Figure 37](#)) to select the appropriate slot. The selection configuration can be sent to the device by clicking Write button. The current status can be read by using Read button.

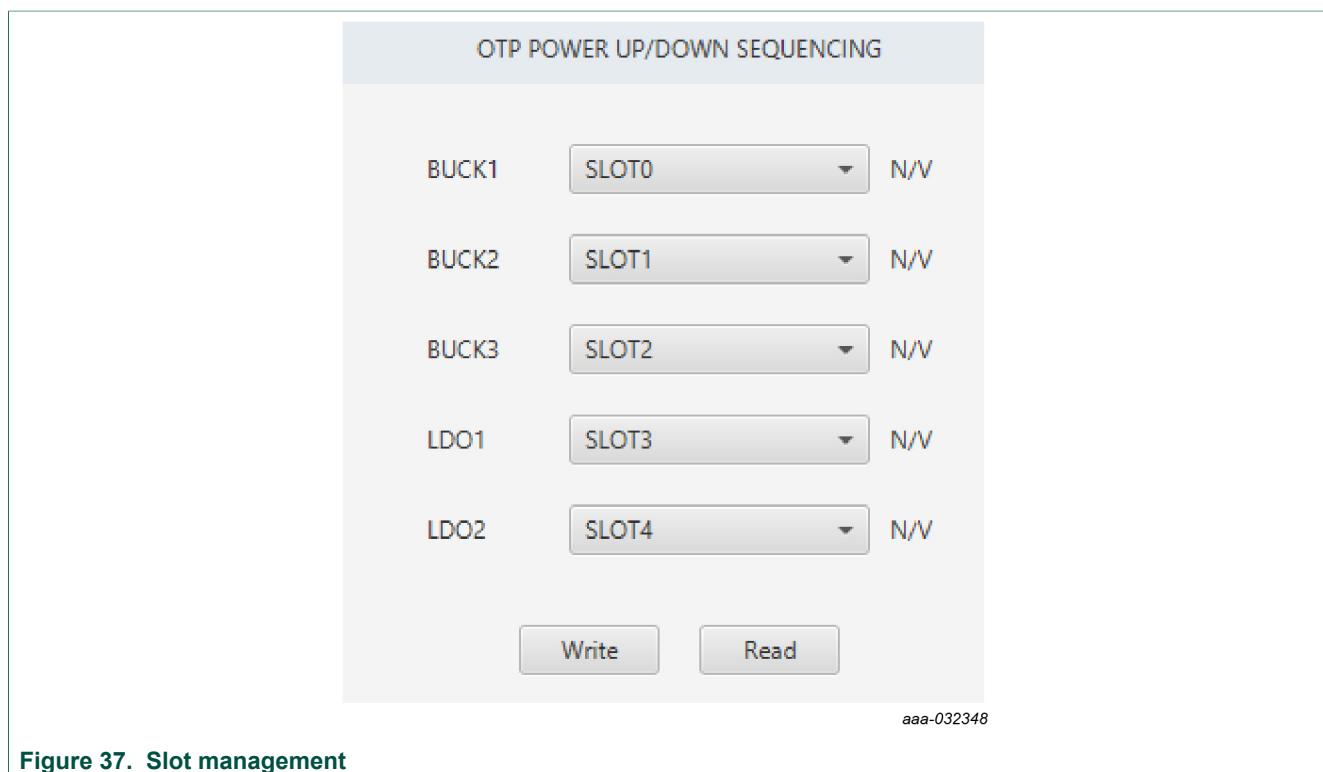


Figure 37. Slot management

8.4.9 TestMode:Mirrors_Main and TestMode:Mirrors_FailSafe

The TestMode:Mirrors_Main and TestMode:Mirrors_FailSafe tabs allow access to the OTP main mirrors and fail-safe registers. These tabs are available in Test mode.

Figure 38 shows the configuration interface for the TestMode:Mirrors_Main tab. The interface is organized into several sections:

- VPREG:** Includes settings for Output voltage (3.3V), Slope compensation (70mV/us), Current limitation threshold (150mV), Low Side slew rate control (900mA), High Side slew rate control (130mA), VPREG phase (delay) selection (NoDelay), Delay to turn OFF VPREG at device power down (250us), and VPREG clock selection (CLK_DIV2). Buttons for Write and Read are at the bottom.
- BOOST:** Includes settings for Output voltage (5.74V), BOOST enable (Enabled), BOOST minimum ON time (60ns), VBOOST slope compensation (125mV/us), VBOOST Low Side slew rate (500V/us), BOOST phase (delay) selection (Delay2), BOOST clock selection (CLK_DIV1), and Regulator behavior in case of ... (BOOST shutdown). Buttons for Write and Read are at the bottom.
- LDOs:** Includes settings for VLDO2 current limitation (400mA), VLDO2 output voltage (5.0V), VLDO2 sequencing slot (Slot3), Regulator behavior in case of ... (LDO2 shutdown), VLDO1 current limitation (400mA), VLDO1 output voltage (3.3V), VLDO1 sequencing slot (Slot2), and Regulator behavior in case of ... (LDO1 shutdown). Buttons for Write and Read are at the bottom.
- BUCK1:** Includes settings for VBUCK1 output voltage (1.25V), BUCK1 inductor selection (1uH), BUCK1 current limitation (2.6A), VBUCK1 & VBUCK2 multiphase o... (Disabled), BUCK1 Compensation Network (65GM), BUCK1 sequencing slot (Slot0), BUCK1 phase (delay) selection (Delay5), BUCK1 clock selection (CLK_DIV1), and Regulator behavior in case of TSD (BUCK1 shutdown). Buttons for Write and Read are at the bottom.
- BUCK2:** Includes settings for VBUCK2 output voltage (1.25V), BUCK2 inductor selection (1uH), BUCK2 enable (Disabled), BUCK2 current limitation (2.6A), BUCK2 compensation netw... (65GM), BUCK2 sequencing slot (NotStart), BUCK2 phase (delay) selecti... (Delay4), BUCK2 clock selection (CLK_DIV1), and Regulator behavior in case ... (BUCK2 shutdown). Buttons for Write and Read are at the bottom.
- BUCK3:** Includes settings for VBUCK3 output voltage (2.8V), BUCK3 enable (Enabled), BUCK3 inductor selection (1uH), BUCK3 current limitation (2.6A), BUCK3 gain control (Default), BUCK3 sequencing slot (Slot1), BUCK3 phase (delay) selecti... (Delay7), BUCK3 clock selection (CLK_DIV1), and Regulator behavior in case ... (BUCK3 shutdown). Buttons for Write and Read are at the bottom.
- CLOCK:** Includes settings for PLL enable (Disabled). Buttons for Write and Read are at the bottom.
- SM:** Includes settings for Synchronization with 1x VR5500 or 1x P... (2x VR5500), Synchronization with 2 devices (Disabled), and Device I2C address (D0). Buttons for Write and Read are at the bottom.
- VSUP UV/OV:** Includes settings for VSUP Under Voltage Threshold Configur... (4.9V), Regulator assigned to VDDIO (OV) (LDO1), and Device I2C address (D0). Buttons for Write and Read are at the bottom.

aaa-035484

Figure 38. TestMode:Mirrors_Main

Figure 39 shows the configuration interface for the TestMode:Mirrors_FailSafe tab. The interface is organized into several sections:

- VMON1:** Includes settings for Overvoltage threshold [%] (112), Undervoltage threshold [%] (88), Undervoltage Filtering Timing ... (15), Assignment to PGOOD (Not_Assigned), and Monitoring (Enabled). Buttons for Write and Read are at the bottom.
- VDDIO:** Includes settings for Overvoltage threshold [%] (112), Overvoltage Filtering Timing ... (25), Undervoltage threshold [%] (88), Undervoltage Filtering Timing ... (15), Assignment to PGOOD (Not_Assigned), and Voltage selection (3.3V). Buttons for Write and Read are at the bottom.
- VCORE:** Includes settings for Overvoltage threshold (BUCK1...) (112), Overvoltage Filtering Timing [us] (25), Undervoltage threshold [%] (88), Undervoltage Filtering Timing ... (15), Assignment to PGOOD (Not_Assigned), and Monitoring voltage (VBUCK1) (1.25V). Buttons for Write and Read are at the bottom.
- Miscellaneous:** Includes settings for SVS max value allowed (NoSVS), NoSVS (checkbox), RSTB assignment to PGOOD (checkbox), Not_Assigned (checkbox), and Device I2C address (D0). Buttons for Write and Read are at the bottom.

aaa-035677

Figure 39. TestMode:Mirrors_FailSafe

The Read button provides the current status. The Write button changes the configuration in mirror register. It can be useful, for example, to modify few parameters from OTP fuse to start up the board.

9 References

- [1] **KITVR55-FSSKTEVM** — detailed information on this board, including documentation, downloads, software and tools
<http://www.nxp.com/KITVR55-FSSKTEVM>
- [2] **VR5500** — product information on VR5500, high voltage PMIC with multiple SMPS and LDO
<http://www.nxp.com/VR5500>
- [3] **VR5500 OTP Config.xlsx** — OTP configuration file

10 Revision history

Revision history

Rev	Date	Description
v.1	20191104	initial version

11 Legal information

11.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Safety of high-voltage evaluation products — The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel that is qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. The product does not comply with IEC 60950 based national or regional safety standards. NXP Semiconductors does not accept any liability for damages incurred due to inappropriate use of this product or related to non-insulated high voltages. Any use of this product is at customer's own risk and liability. The customer shall fully indemnify and hold harmless NXP Semiconductors from any liability, damages and claims resulting from the use of the product.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

11.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Tables

Tab. 1.	Compensation network	5	Tab. 10.	Program connector (J30)	15
Tab. 2.	Evaluation board component descriptions	10	Tab. 11.	Evaluation board test point descriptions	16
Tab. 3.	Evaluation board indicator descriptions	12	Tab. 12.	Evaluation board jumper descriptions	17
Tab. 4.	VBAT Phoenix connector (J1)	13	Tab. 13.	SW3	18
Tab. 5.	BUCK1/BUCK2 connector (J14)	13	Tab. 14.	SW2	18
Tab. 6.	VBOOST/BUCK3 connector (J16)	13	Tab. 15.	SW1	18
Tab. 7.	LDO1/LDO2 connector (J2)	14	Tab. 16.	Jumper configuration	28
Tab. 8.	VPRE connector (J3)	14	Tab. 17.	Switch configuration	28
Tab. 9.	Debug connector (J29)	14	Tab. 18.	OTP burning flag status	43

Figures

Fig. 1.	KITVR55-FSSKTEVM	1	Fig. 19.	OTP_conf_summary example	31
Fig. 2.	VMON1 configuration	4	Fig. 20.	OTP script generation	31
Fig. 3.	VPRE compensation network	5	Fig. 21.	Launcher panel - bus selection	33
Fig. 4.	BUCK1 and BUCK2 multiphase configuration	5	Fig. 22.	Main panel	34
Fig. 5.	VDDIO selection	6	Fig. 23.	Disabling device mode polling	35
Fig. 6.	VDDI2C supply	6	Fig. 24.	Script editor	35
Fig. 7.	OTP configuration	7	Fig. 25.	Build a command	37
Fig. 8.	Debug mode entry	7	Fig. 26.	Send script	37
Fig. 9.	OTP hardware implementation	8	Fig. 27.	Correct format	37
Fig. 10.	Evaluation board featured component locations	9	Fig. 28.	Wrong format ("// missing in second line)	37
Fig. 11.	Evaluation board indicator locations	12	Fig. 29.	Register map	38
Fig. 12.	Evaluation board connector locations	13	Fig. 30.	Clocks	39
Fig. 13.	Evaluation board test points	15	Fig. 31.	Regulators	40
Fig. 14.	Evaluation board jumper locations	16	Fig. 32.	Measurements	40
Fig. 15.	Switch locations	18	Fig. 33.	Interrupt flags	41
Fig. 16.	Typical initial configuration	28	Fig. 34.	Diag safety	42
Fig. 17.	OTP_conf_main_reg spreadsheet example	30	Fig. 35.	OTP burning	42
Fig. 18.	OTP_conf_failsafe_reg spreadsheet example	30	Fig. 36.	TestMode:Sequencer	44
			Fig. 37.	Slot management	44
			Fig. 38.	TestMode:Mirrors_Main	45
			Fig. 39.	TestMode:Mirrors_FailSafe	45

Contents

1	Introduction	2	8.4	Understanding the VR5500 workspace	38
2	Finding kit resources and information on the NXP website	2	8.4.1	Register map	38
2.1	Collaborate in the NXP community	2	8.4.2	Clocks	39
3	Getting ready	2	8.4.3	Regulators	39
3.1	Kit contents	2	8.4.4	Measurements	40
3.2	Additional hardware	3	8.4.5	Interrupt flags	41
3.3	Windows PC workstation	3	8.4.6	Diag safety	42
3.4	Software	3	8.4.7	OTP programming	42
4	Getting to know the hardware	3	8.4.8	TestMode:Sequencer	43
4.1	Kit overview	4	8.4.9	TestMode:Mirrors_Main and TestMode:Mirrors_FailSafe	44
4.1.1	KITVR55-FSSKTEVM features	4	9	References	46
4.1.2	VMON1 board configuration	4	10	Revision history	46
4.1.3	VPRE compensation network	4	11	Legal information	47
4.1.4	BUCK1 and BUCK2 multiphase configuration	5			
4.1.5	VDDI2C	5			
4.2	Device OTP user configuration	6			
4.2.1	OTP and mirrors registers	6			
4.2.2	OTP hardware implementation	7			
4.3	Kit featured components	9			
4.3.1	VR5500: high voltage PMIC with multiple SMPS and LDO	10			
4.3.1.1	General description	10			
4.3.1.2	Features	11			
4.3.2	Indicators	12			
4.3.3	Connectors	13			
4.3.3.1	VBAT connector (J1)	13			
4.3.3.2	Output power supply connectors	13			
4.3.3.3	Debug connector (J29)	14			
4.3.3.4	Program connector (J30)	15			
4.3.4	Test points	15			
4.3.5	Jumpers	16			
4.3.6	Switches	18			
4.4	Schematic, board layout and bill of materials ...	18			
5	Installing and configuring software and tools	19			
5.1	Installing the Java JRE	19			
5.2	Installing Windows 7 FlexGUI driver	19			
5.3	Installing FlexGUI software package	27			
6	Configuring the hardware for startup	28			
7	Using the KITVR55-FSSKTEVM evaluation board	29			
7.1	Generating the OTP configuration file	29			
7.2	Working in OTP emulation mode	32			
7.3	Programming the device with an OTP configuration	32			
8	Using FlexGUI	32			
8.1	Starting the FlexGUI application	32			
8.2	Establishing the connection between FlexGUI and the hardware	33			
8.3	Working with the script editor	35			
8.3.1	Script text editor	35			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.