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About this document 

Scope and purpose 

This document presents a system solution based on Infineon CoolMOS™ CFD7 silicon superjunction power 
semiconductors, drivers and microcontroller for a bridgeless totem pole power factor correction (PFC) 

converter operated in continuous conduction mode (CCM). In order to use the CoolMOS™ CFD7 in CCM 
operation a pre-charge circuit is added to the traditional totem pole topology. This document shows the 
operation of such a circuit and the design procedure. The EVAL_3K3W_TP_PFC_CC is intended for those 
applications which require the highest efficiency (99 percent) and high power density (92 W/in3), such as high-

end server and telecom.  

Furthermore, the implementation of the totem pole PFC with CoolMOS™ CFD7 provides an attractive price–
performance ratio. The totem pole implemented in the EVAL_3K3W_TP_PFC_CC board operates at 65 kHz with 

full digital control implementation on an Infineon XMC1000 series microcontroller. 

The Infineon components used in this 330 W bridgeless CCM totem pole PFC board are: 

 600 V CoolMOS™ S7 and CFD7 superjunction MOSFET 

 EiceDRIVER™ 2EDF7275F safety isolated gate drivers  

 XMC1402 microcontroller 

 ICE5QSAG CoolSET™ quasi-resonant (QR) flyback controller 

 950 V CoolMOS™ P7 superjunction MOSFET 

 OptiMOS™ 100 V MOSFET and CoolSiC™ 650 V Schottky diode 
 

 

Figure 1 3300 W bridgeless totem pole PFC with CoolMOS™ and XMC™ control. The plastic enclosure 

has been removed for a better view. 

https://www.infineon.com/eval-3k3w-tp-pfc-cc
https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/600v-coolmos-s7/
https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/600v-coolmos-cfd7/
https://www.infineon.com/cms/en/product/power/gate-driver-ics/2edf7275f/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc1000-industrial-microcontroller-arm-cortex-m0/xmc1400/
https://www.infineon.com/cms/en/product/power/ac-dc-power-conversion/ac-dc-pwm-pfc-controller/pwm-qr-quasi-resonant-flyback-ics/ice5qsag/
https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/coolmos-p7/950v-coolmos-p7/
https://www.infineon.com/cms/en/product/power/mosfet/12v-300v-n-channel-power-mosfet/optimos-and-strongirfet-latest-family-selection-guide/100v-n-channel-power-mosfet/
https://www.infineon.com/cms/en/product/power/diodes-thyristors/coolsic-schottky-diodes/650v-g5-and-g6/
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1 System description 

The EVAL_3K3W_TP_PFC_CC board is a system solution enabled by Infineon as well as drivers and a 
microcontroller. The evaluation board consists of a bridgeless totem pole PFC rectifier and it is intended for 
high-end applications in which the highest efficiency is required. Totem pole PFC topology is simple and offers 

a reduced part count and full utilization of the PFC inductor and switches [1]. For these reasons, totem pole PFC 
achieves high power density at a reduced system cost for high-performance systems.  

The EVAL_3K3W_TP_PFC_CC board operates in CCM exclusively at high-line (176 Vrms minimum, 230 Vrms 

nominal), with a fixed switching frequency of 65 kHz. It implements the surface-mount device (SMD) 600 V 
CoolMOS™ CFD7 silicon (Si) superjunction MOSFETs to enable a high power density (80 W/in3, including fan and 
connectors) totem pole implementation with an attractive performance–price ratio. As shown in Figure 2, with 

the CoolMOS™ CFD7 CCM totem pole solution, the next level of silicon-based efficiency (close to 99 percent for 

nominal AC voltage) can be reached. Therefore, EVAL_3K3W_TP_PFC_CC board is a cost attractive alternative 
complementing the powerful offering of wide bandgap solutions from infineon technologies. 

Note: Due to production tolerances and differences between measurement setups, efficiency variations 

of up to ±0.2 percent may be observed in the results. 

 

 

  

Figure 2 Measured efficiency at 230 V of the 3300 W totem pole PFC with 90 mΩ CoolMOS™ CFD7 and 

22 mΩ CoolMOS™ S7 

The PFC function, to achieve bulk voltage regulation while demanding high-quality current from the grid, is 
implemented with an Infineon XMC1402 microcontroller [2]. Further detail on PFC control implementation in 
the XMC1000 family can be found in the application notes of other Infineon PSU and PFC evaluation boards 
with classic-boost, dual-boost or totem pole topologies [3] to [6]. 
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The 3300 W CCM bridgeless totem pole PFC with 600 V CoolMOS™ CFD7 presented in this application note is a 
system solution developed with Infineon power semiconductors, all of them in SMD packages, as well as 

Infineon drivers and controllers.  

The Infineon devices used in the implementation of the EVAL_3K3W_TP_PFC_CC board are listed below: 

 90 mΩ 600 V CoolMOS™ CFD7 (IPT60R090CFD7) in TO-Leadless (TOLL) package, as totem pole PFC high-
frequency switches 

 22 mΩ 600 V CoolMOS™ S7 (IPT60R022S7) in TOLL package, for the totem pole PFC return path (low-
frequency half-bridge) 

 BSZ440N10NS3 and IDDD08G65C6 Double DPAK (DDPAK), for a required pre-charge circuit to enable CCM 
totem pole operation with CoolMOS™ CFD7 

 2EDF7275F isolated and 1EDN8511B non-isolated gate drivers (EiceDRIVER™) 

 ICE5QSAG QR flyback controller and 950 V CoolMOS™ P7 (IPU95R3K7P7) for the bias auxiliary supply. 

 XMC1402 microcontroller for PFC control implementation 

A simplified block diagram of the bridgeless topology with the devices mentioned from the Infineon portfolio is 
shown in Figure 3. It can be seen in the simplified block diagram that a low-voltage (LV) OptiMOS™ and a 

CoolSiC™ silicon-carbide (SiC) diode are enclosed together with the driver for the high-frequency half-bridge. 

This circuit is required to enable hard-commutation operation of the CoolMOS™ CFD7, and it will be shown in 
more detail in section 2. 

Note: The diode bridge in front of the totem pole PFC converter is meant to be a current path for start-up 
or surge conditions, and it is not part of the current path during the steady-state converter 

operation. 

 

Figure 3 3300 W bridgeless totem pole PFC board with CoolMOS™ CFD7 (EVAL_3K3W_TP_PFC_CC) – 

simplified diagram showing the topology and the Infineon semiconductors used 

 

https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/600v-coolmos-n-channel-power-mosfet/ipt60r090cfd7/
https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/600v-coolmos-n-channel-power-mosfet/ipt60r022s7/
https://www.infineon.com/cms/en/product/power/mosfet/12v-300v-n-channel-power-mosfet/bsz440n10ns3-g/
https://www.infineon.com/cms/en/product/power/diodes-thyristors/coolsic-schottky-diodes/iddd08g65c6/
https://www.infineon.com/cms/en/product/power/gate-driver-ics/2edf7275f/
https://www.infineon.com/cms/en/product/power/gate-driver-ics/1edn8511b/
https://www.infineon.com/cms/en/product/power/ac-dc-power-conversion/ac-dc-pwm-pfc-controller/pwm-qr-quasi-resonant-flyback-ics/ice5qsag/
https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/900v-coolmos-n-channel-power-mosfet/ipu95r3k7p7/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc1000-industrial-microcontroller-arm-cortex-m0/xmc1400/
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This document will describe the EVAL_3K3W_TP_PFC_CC board implementation, as well as the specifications 
and main test results. For further information on Infineon semiconductors visit the Infineon website, the 

Infineon evaluation board search, and the different websites for the different implemented components: 

 CoolMOS™ power MOSFET 

 Gate driver ICs 

 QR CoolSET™ 

 XMC™ microcontrollers 

 OptiMOS™ power MOSFET 

 CoolSiC™ Schottky diodes 

1.1 Board description 

The evaluation board EVAL_3K3W_TP_PFC_CC is mounted over a metallic chassis and covered by a plastic 
enclosure to suit the fan. Figure 4 shows placement of the different sections of the bridgeless totem pole PFC 

with Infineon 600 V CoolMOS™. The board is 240 mm long, with a width of 70 mm and a height of 40 mm (1U), 
for a power density of 80 W/in3. The dimensions shown include the fan as well as the input and output 

connectors. 

Immediately after the AC input connector, a two-stage EMI (electromagnetic interference) filter is placed, as 

well as a fuse and NTC inrush current limiter, together with the input relay. The fan is placed at the side of the 
AC connector and blows air out of the evaluation board. The DC output connector is placed on the other side of 

the board than the AC connector. Close to the output connector, a common-mode choke is placed to guarantee 
proper acquisition of the output variables in efficiency measurements. 

Two daughter cards are introduced: the bias board and the control card. The bias board 

(KIT_6W_13V_P7_950V) uses a QR CoolSET™ controller and 950 V CoolMOS™ P7 switch to generate the 
required voltages for the control card, driving, relay, fan supply and pre-charge voltage supply. The control 

card implements the required current, voltage and polarity sensing. The full digital control is implemented in 

the Infineon XMC™ microcontroller, which is in charge of the proper operation of the bridgeless totem pole 

topology. 

The rest of the board is occupied by the bridgeless totem pole itself, which comprises the PFC choke, the bulk 
capacitor and a bridge with 600 V CoolMOS™ CFD7 and 600 V CoolMOS™ S7. The bulk capacitance is designed to 

comply with the hold-up time shown in Table 2. The semiconductors in SMD package (TOLL and DDPAK) are 
mounted on the bottom side of the board (Figure 5). Two heatsinks, at both sides of the PFC choke, help to 

remove the heat dissipation of the SMD semiconductors mounted in the bottom side. The choke is designed 
with high-flux GT material in order to comply with the height requirement, high efficiency performance and 
high power density. 

 

 

http://www.infineon.com/
https://www.infineon.com/cms/en/tools/solution-finder/product-finder/evaluation-board/
https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/
https://www.infineon.com/cms/en/product/power/gate-driver-ics/
https://www.infineon.com/cms/en/product/power/ac-dc-power-conversion/ac-dc-integrated-power-stage-coolset/quasi-resonant-coolset/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
https://www.infineon.com/cms/en/product/power/mosfet/12v-300v-n-channel-power-mosfet/
https://www.infineon.com/cms/en/product/power/mosfet/12v-300v-n-channel-power-mosfet/
https://www.infineon.com/cms/en/product/power/diodes-thyristors/coolsic-schottky-diodes/
https://www.infineon.com/cms/en/product/evaluation-boards/kit_6w_13v_p7_950v/
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Figure 4 Placement of the different sections in the 3300 W bridgeless totem pole PFC with Infineon 

600 V CDF7 and CoolMOS™ S7 MOSFETs and XMC™ control 

 

 

Figure 5 SMD power semiconductors mounted on the bottom side of the PCB 
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2 Lossless hard-commutated operation of CoolMOS™ in CCM 

totem pole PFC 

The use of Si superjunction MOSFETs and CoolMOS™ in a half-bridge configuration does not enable high 

performance of the totem pole PFC in CCM operation. The reasons are the very high charge (QOSS) required to 
charge and discharge the highly non-linear COSS of the devices together with the significantly high reverse-
recovery losses of the intrinsic body diode of the Si superjunction MOSFETs (Figure 6). 
 

 

 

 

Figure 6 COSS behavior in a half-bridge (left), and reverse recovery charge (right) of CoolMOS™ CFD7 

In order to use CoolMOS™ in a hard-commutated half-bridge, e.g., in CCM PFC, a solution based on a pre-charge 
circuit is implemented in EVAL_3K3W_TP_PFC_CC. The implementation is presented in Figure 7 as a typical 

double-pulse test configuration, which reflects the hard-commutation event at the diode-to-switch transition 
in the totem pole PFC operating in CCM. In that topology, hard-commutation of the diode-mode switch occurs 
every switching cycle. 
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Figure 7 Circuit diagram for operation of CoolMOS™ superjunction MOSFETs in a hard-commutated 

half-bridge 

In the half-bridge of Figure 7, Q2 typically turns on with soft-switching, after Q1 turns off, given the energy 

accumulated in the inductor connected to the switching node. However, when Q2 is turned off, the inductor 
current keeps flowing through its body diode (freewheeling current) and a hard-commutation of Q2 body diode 

current occurs when Q1 is turned on. 

With the added pre-charge circuit, the Si superjunction MOSFET operating in freewheeling or “diode mode” (Q2 
in Figure 7) can be depleted to a certain level, e.g., 24 V, before its channel is switched on. This drastically 

reduces the losses associated with its output capacitance charge (QOSS), and the reverse recovery charge (Qrr) of 

its body diode during the turn-off transition, since those charges are provided from a LV source. As a result, the 
commutation losses in the Si superjunction MOSFETs are greatly reduced, and continuous hard-commutation 
in the CCM operation of the totem pole PFC is feasible. 

The proposed “pre-charge” solution requires extra parts for each of the CoolMOS™ devices in the half-bridge: a 

single high-voltage Schottky diode (D1 and D2 in Figure 2) and a LV MOSFET (Q3 and Q4 in Figure 2). It also 

requires two supply voltages for driving the half-bridge and the LV MOSFETs (13 V) and for providing the pre-

charge or depletion voltage (24 V). The proposed solution implements the level-shifting (bootstrap capacitors) 
technique with traditional drivers, for both the driver supply and the depletion voltage. These two voltage 
domains are highlighted in orange (13 V) and blue (24 V) in Figure 7. 

Furthermore, the included Rx to Cx and Ry to Cy filter networks at the driver inputs allow the proper timing of the 
PWM (pulse width modulation) signals to the half-bridge devices as well as to the added LV switches; thus, no 

extra PWM signals from the controller are required. 
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2.1 Half-bridge hard-commutation transition with the pre-charge circuit 

This section presents the operation of a hard-commutated half-bridge with CoolMOS™ and the added pre-
charge circuit. The double-pulse test configuration as in Figure 7 is used for explanation. The main waveforms 

are presented in Figure 8, where the transitions at the different PWM events are not shown to scale for a more 
adequate display. 

In a state prior to t0, the inductor was energized through Q1, which would implement the switch function in a 
totem pole PFC. Once Q1 is turned off, the inductor current flows through Q2, first through its body diode and 
then through the channel of the device, once Q2 is turned on. Therefore Q2, which implements the diode 
function in a totem pole PFC, is turned on with zero voltage switching (ZVS). 

At a given moment in time (t0 in Figure 8), Q2 must be switched off so the current will flow again through Q1 

when turned on. After a certain delay time (due to the Ry to Cy network at the input of the gate driver of Q2), the 

gate-to-source voltage signal of Q2 also changes its state to off at t1. During the mandatory dead-time in any 
half-bridge (t1 to t2), the inductor current freewheels through the body diode of Q2. Until t2, the switching node 
is clamped to the ground and all the bootstrap capacitors, with the exception of CHS_P, for both driving and 
depletion voltages are charged (Figure 9.a and Figure 9.b). 

Then, after the corresponding dead-time, PWM B is applied, and the Cx to Rx network at the input of the Q4 gate 
driver generates a pulse of a certain duration. Therefore, the pre-charging MOSFET Q4 is turned on at t2 (Figure 

9.c) and a pre-charge current (pre-charge I “diode”) circulates in the CLS_DP to Q4 to D2 to Q2 network. The 
effective circulation of this current depends on the fact that the magnitude of such a pre-charging current must 
be higher than the freewheeling load current flowing through the body diode of the Si superjunction MOSFET 

Q2. At the end of the pre-charge current (t3), the intrinsic body diode of Q2 is deactivated and the drain-to-

source voltage (VDS,Q2) is pre-charged to 24 V. 
 

 

Figure 8 Commutation waveforms of the half-bridge shown in Figure 7 
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a (until t1) 

 

b (t1 to t2) 

 

c (t2 to t4) 

 

d (t4 to t5) 
 

Figure 9 Hard-commutation transition in a half-bridge operation with CoolMOS™ and the added 

pre-charge circuit 

As shown in Figure 8, the pre-charge current waveform has two peak pulses; the first one, between t2 and t3, is 
related to the charging of the Q2 COSS and the second one, with a lower magnitude between t3 and t4, is due to 

the resonance with the stray inductances of the pre-charge loop. 

When the delayed PWM B signal finally reaches the gate of Q1 at t4, the COSS of Q2 is already depleted with 24 V, 

which sets the stage for a smooth diode-to-switch transition. As shown in Figure 9.d, when Q1 is turned on the 
bootstrap capacitor for the driving of Q3 (CHS_P) is charged from the bootstrap capacitor of Q1 (CHS). 

As can be seen in Figure 8, the duration of the pulse applied to the pre-charge MOSFET Q4 goes beyond t4 when 
commutation and transient events happen in both Q1 and Q2. This is done intentionally in order to guarantee 

the proper losses of the Si SJ MOSFET Q1 during turn-on. If this pulse falls short, the possibility of severe hard-

commutation is high in the Si superjunction MOSFET, which would produce destructive results if it were to 

occur during multiple successive events. 

When the PWM B signal goes low, similar to before, due to the Ry to Cy network at the input of the gate driver of 
Q1, there is a certain delay before the device fully turns off at t5. Due to the load or inductor current, 
immediately after the channel is completely closed, the COSS of Q1 will be charged to 400 V and the COSS of Q2 

will be discharged to 0 V, producing a ZVS transition for Q2. This is the case in the switch-to-diode transition in a 

PFC application. In this situation, the pre-charge circuit of the high-side switch (CHS_DP to Q3 to D1) will not have 
any influence on the operation of the half-bridge with Si superjunction MOSFETs. 

This ZVS turn-on transition of the diode is possible when the load or inductor current is high enough to enable 
charge and discharge of the corresponding COSS. However, if the inductor current at this transition is not enough 

to charge and discharge the COSS of the half-bridge devices, a hard-switching transition will happen. This 
situation is shown in Figure 8 as a dotted line after t6. In this case, the pulse applied to the pre-charge MOSFET 
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Q3 becomes effective and causes the charge of Q1 COSS to the depletion voltage by the CHS_P to Q3 to D1 to Q1 
network. Once Q2 is turned on, its drain-to-source voltage will drop again close to zero and a smooth switch-to-

diode transition is achieved without severe hard-switching. 

2.2 Pre-charge circuit design 

The circuit shown in Figure 7 has been simulated for different inductor current levels and the results are shown 
in Figure 10. As it can be seen in Figure 10, there are different responses of the VDS of the Si superjunction 
MOSFET working as a diode (freewheeling the inductor current) in Figure 7. Once the COSS reaches the same 

voltage as the CLS_DP, then the pre-charge currents stops circulating and abruptly falls to zero. The slope of this 

falling edge provokes a voltage drop across the stray inductance in the loop, which is reflected as a voltage 
spike in VDS. Once the VDS falls back toward the depletion voltage, it is possible to start the hard-commutation 
transition against the other Si superjunction MOSFET in the half-bridge. During the turn-on transition of Q1, the 

losses associated with the QOSS and Qrr of Q2 are calculated as in (1). 

𝑃 =
1

2
∙ (𝑄𝑜𝑠𝑠_𝑄2@24𝑉 + 𝑄𝑟𝑟_𝑄2_𝐵𝐷@24𝑉) ∙ 𝑉𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 ∙ 𝑓𝑠𝑤 (1) 

For a given CoolMOS™ to be used in the half-bridge (Q1 and Q2), there is a charge that needs to be removed 
from its body diode and output capacitance. This is the red triangle area in Figure 10, when there is a very low 

freewheeling current in the inductor, or the blue area when the freewheeling current is 20 A. Therefore, the 
maximum current in the pre-charge circuit can be approximated as (2), where IFW_max is the maximum inductor 
current to be commutated, Qrr is the device reverse-recovery charge stated in the datasheet [7], and n is the 

number of devices in parallel per position in the half-bridge. 

 
 

 

Figure 10 Simulated drain-source voltage of Q2 (top) and pre-charge current (bottom) for different 

freewheeling currents 

𝐼𝑃𝑟𝑒𝐶ℎ𝑎𝑟𝑔𝑒_𝑝𝑘 ≈ 𝐼𝐹𝑊_𝑚𝑎𝑥 +
n ∙ Q𝑟𝑟
𝑡𝑞𝑟𝑟

 (2) 
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The time tqrr is the part of the conduction time of the pre-charge circuit due to the removal of the reverse-
recovery charge and it is calculated as in (3), where LPCloop is the stray inductance of the pre-charge loop and VDP 

is the provided depletion voltage (24 V as introduced in the previous section). This voltage can be modified 
according to the COSS variation of the SJ MOSFET (Figure 6). 

𝑡𝑞𝑟𝑟 = √
𝐿𝑃𝐶𝑙𝑜𝑜𝑝 ∙ n ∙ Q𝑟𝑟

𝑉𝐷𝑃
 (3) 

A second component of the conduction time of the pre-charging circuit is tloop. This is related to the required 
time to reach the freewheeling current due to the stray inductance of the pre-charge loop, and the longest time 
in the application happens at the maximum current to be commutated by the half-bridge (4). 

𝑡𝑙𝑜𝑜𝑝 =
𝐿𝑃𝐶𝑙𝑜𝑜𝑝 ∙ I𝐹𝑊_𝑚𝑎𝑥

𝑉𝐷𝑃
 (4) 

The total conduction time (tPreCharge) is the addition of the times calculated in (3) and (4). This time is required to 
calculate the filter to be applied to the half-bridge switches: Cy and Ry. For a selected capacitance Cy, the 
resistor Ry can be calculated as shown in (5), where Von_th_driver_in and Vcc_driver_in are the on-threshold and the 

supply voltages of the input section of the driver, respectively. 

𝑅𝑦 =
1.35 ∙ t𝑃𝑟𝑒𝐶ℎ𝑎𝑟𝑔𝑒

𝐶𝑦 ∙ 𝑙𝑛 (
1

1 −
𝑉𝑜𝑛_𝑡ℎ_𝑑𝑟𝑖𝑣𝑒𝑟_𝑖𝑛
𝑉𝑐𝑐_𝑑𝑟𝑖𝑣𝑒𝑟_𝑖𝑛

)

 

(5) 

Once the Ry and Cy values have been calculated, the actual delay of the half-bridge pulses can be calculated by 

considering the delay introduced to the input of the driver (Ry to Cy network) and the turn-on delay motivated 

by the Rg(on) to CISS of the CoolMOS™ mounted in the totem pole (6). Both the internal Rg of the device (if 

applicable) and the external one have to be considered in the calculation, as well as the plateau voltage of the 
CoolMOS™ implemented in the totem pole. 

𝑡𝑑𝑒𝑙𝑎𝑦 = (𝑅𝑔𝑒𝑥𝑡 + 𝑅𝑔𝑖𝑛𝑡) ∙ 𝐶𝑖𝑠𝑠 ∙ 𝑙𝑛

(

 
 1

1 −
𝑉𝑝𝑙𝑎𝑡𝑒𝑎𝑢
𝑉𝑐𝑐𝑑𝑟𝑖𝑣𝑒𝑟𝑖𝑛)

 
 
+ 𝑅𝑦 ∙ 𝐶𝑦 ∙ 𝑙𝑛 (

1

1 −
𝑉𝑜𝑛_𝑡ℎ_𝑑𝑟𝑖𝑣𝑒𝑟_𝑖𝑛
𝑉𝑐𝑐_𝑑𝑟𝑖𝑣𝑒𝑟_𝑖𝑛

) (6) 

With this delay, the high-pass filter to generate the pulse which activates the pre-charging loop can be 
calculated. As already mentioned, the duration of this pulse should be longer than the calculated delay for 

proper operation of the pre-charge circuit, which avoids hard-commutation of the half-bridge CoolMOS™ 
MOSFETs. With these considerations, Rx is calculated as in (7) by selecting first a capacitance Cx and introducing 

the supply voltage and the off-threshold (Voff_th_driver_in) of the input section of the driver. 

𝑅𝑥 =
2 ∙ t𝑑𝑒𝑙𝑎𝑦

𝐶𝑥 ∙ 𝑙𝑛 (
𝑉𝑐𝑐_𝑑𝑟𝑖𝑣𝑒𝑟_𝑖𝑛

𝑉𝑜𝑓𝑓_𝑡ℎ_𝑑𝑟𝑖𝑣𝑒𝑟_𝑖𝑛
)

 
(7) 

The SiC Schottky diode of the pre-charge loop (D1/D2 in Figure 7) is selected to cope with the maximum 
current in the loop (2) at a given temperature, which is usually 100°C or 150°C as maximum junction 

temperature from the datasheet. 



  

Application Note 13 V 1.0 

                                                                                                                                                                                                                                                                     2021-03-31

  

3300 W continuous conduction mode totem pole PFC with 600 V 

CoolMOS™ CFD7 and XMC™ 
EVAL_3K3W_TP_PFC_CC Lossless hard-commutated operation of CoolMOS™ in CCM totem pole PFC 

  

The selection of the LV MOSFET in the pre-charge circuit must consider the charge balance between its output 
capacitance and the one of the Schottky diode in series in order to avoid avalanche issues when both devices 

go into the blocking state. In practical terms, the output capacitance of the LV MOSFET must be considerably 
higher than the capacitance of the Schottky diode. A clamping diode can be used as well, with an anode in the 

source of the CoolMOS™ CFD7 of the half-bridge and the cathode in the source of its corresponding LV MOSFET. 
This clamping diode avoids the possibility of the LV MOSFET falling into avalanche. 
 

2.2.1 Design tool for the pre-charge circuit 

The design procedure presented above has been implemented in a calculation tool to automate the design for 
different RDS(on) values of the CoolMOS™ CFD7 series. A capture of the tool, which is embedded at the end of this 
section, is shown in Figure 11. On the left side, the green cells are the inputs for the design procedure and 

include parameters of the pre-charge loop as the depletion voltage and the loop inductance, as well as the 
maximum current to be commutated and the number of parallel CFD7 devices in the totem pole. Other inputs 

are related to the driver voltages and supply, and the external Rg used as well as the capacitance to be used in 

the Rx to Cx and Ry to Cy filters. 

Regarding the outputs of the design tool, the total Qrr involved in the hard-commutation as well as the required 

pre-charge time and the pre-charge peak current are shown for different RDS(on) devices of CoolMOS™ CFD7 in 

TOLL package, from 35 mΩ up to 145 mΩ. With the time and current, the Rx and Ry values are calculated as well 
as the required diode to be used when 100°C or 150°C are considered as maximum junction temperatures. 
 

 

Figure 11 Capture of the design tool for implementing CoolMOS™ CFD7 in CCM totem pole PFC 

according to the design procedure presented in this section 

Design Outputs

Design 

Inputs
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Table 1 shows the estimated timing and current for a half-bridge design using two 90 mΩ 600 V CoolMOS™ CFD7 
in parallel per position in the half-bridge, as well as the design of the RC filter values and the chosen 

semiconductors according to the presented design procedure implemented in the design tool. 

Table 1 Pre-charge loop parameters when two IPT60R090CFD7 CoolMOS™ are used in parallel in 
the half-bridge 

Parameter Value 

Lloop 18.5 nH 

VCC/Von/Voff driver input 5 V/2 V/1 V 

Qrr 0.9 µC 

Tqrr 36 ns 

Tloop 17 ns 

IpreCharge_pk 74 A 

Diode at 100°C IDDD08G65C6 

Diode at 150°C IDDD12G65C6 

LV MOSFET BSZ440N10NS3 

Rx/Ry (Cx = Cy = 470 pF) 187 Ω/294 Ω 

 

Note: The design tool presented in this section can be downloaded in the product registration page 
(www.infineon.com/productregistration) using the serial number of your evaluation board. 

 

2.3 Schematic implementation of the CCM totem pole with CoolMOS™ CFD7 

This section will present the actual implementation, at a schematic level, of the previously presented solution. 

The totem pole with Si superjunction MOSFET and the required pre-charge circuit is shown in Figure 12. Apart 

from the low-frequency CoolMOS™ S7 (highlighted in black) and the totem pole with paralleled CoolMOS™ 

CFD7 (marked in red), the pre-charge circuit is shown inside the orange frame together with the bootstrap 
implementation for the depletion voltage of the high-side CoolMOS™ CFD7. 

 

http://www.infineon.com/productregistration
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Figure 12 Schematic of the totem pole implementation with CoolMOS™ CFD7 and the pre-charge 

circuit 

The driving scheme applied to the previously introduced totem pole with pre-charge circuit is shown in Figure 
13. Two dual-channel isolated drivers from Infineon (2EDF7275F) are used. The RC and CR networks for pulse 
generation are inside the orange frame, and the bootstrap implementation for both HV and LV MOSFETs can be 

found in the green box. 
 

 

Figure 13 Schematic of the drivers for the high-frequency half-bridge and the pre-charging circuit 

The low-frequency half-bridge is also driven using the 2EDF7275F dual-channel isolated driver with bootstrap, 
as shown in the bottom part of Figure 14. The same figure presents a charge pump implemented with the 

driver 1EDN8511B from Infineon. This charge pump is used as a voltage doubler and enables generation of the 

depletion voltage (24 V domain in the previous explanation) directly from the 13 V (driving voltage) provided by 
the bias board. 

Low frequency half-bridge 

and protection diodes

High frequency half-bridge for CCM 

totem pole with CoolMOS™ CFD7

Pre-charge circuit with bootstrap 

of the depletion voltage (24 V)

RC and CR network for 

pulse generationBootstrap of the HV and 

LV MOSFET drivers
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Figure 14 Schematic of the low-frequency half-bridge driver (bottom) and voltage doubler to 

generate the depletion voltage (top) 

The only part left of the EVAL_3K3W_TP_PFC_CC board schematic is the input filter. Figure 15 introduces the 

EMI filter schematic with the input current fuse and the inrush current limitation (NTC and relay). The AC 

voltage is sensed before the NTC. Another NTC for temperature sensing (SMD) is included as well as the input 

connector, the screws to connect to the chassis, and the bias board connector and decoupling capacitor for the 
fan supply. 
 

 

Figure 15 Schematic of the EMI filter, fuse, NTC and relay together with AC and polarity sensing 

2.4 Control implementation 

The evaluation board EVAL_3K3W_TP_PFC_CC implements CCM average current mode control with duty feed-
forward (DFF). For the digital implementation of a CCM average current mode control, the inductor current, the 
AC input voltage and the DC output voltage are required. Figure 16 shows a simplified block diagram of the 

totem pole topology with the required sensing. In addition, the pre-charge block has been added. It can be 
noted that due to the RC and CR filters, it is not required to provide more control signals than the ones for the 
half-bridge operation of the totem pole PFC. Furthermore, due to the bootstrap concept, shown in the figure by 
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the orange and blue diodes connecting the pre-charge and driver blocks, only 13 V and 24 V referenced to the 
low-side source are required. 

 

Figure 16 Block diagram of the sensing circuitry required for totem pole control with XMC™ and 

control reference in the AC rail in series with the PFC choke 

2.4.1 Signal conditioning for digital control of totem pole CCM PFC 

Unlike the classic PFC in which the AC voltage is rectified by the diode bridge, in the bridgeless totem pole PFC 

the inductor current is both positive and negative. The most simple and cost effective way to sense this current 
is to use a shunt resistor in series with the inductor, as shown in Figure 16. In addition, in the 

EVAL_3K3W_TP_PFC_CC board, the control reference (GND_iso in Figure 16) is placed in the AC-line after the 
shunt resistor. Therefore, the current sense voltage (CS+) is positive and negative according to the positive 

reference current shown by the red arrow of Figure 16. 

Since the ADC of the microcontroller used for the control implementation (XMC1402 from Infineon 
Technologies [2]) only allows input voltages between zero and the supply voltage (Vcc_XMC in Figure 16), an 

offset is included together with the current sense gain in order to properly use the input span of the ADC. In this 

case the offset is 2.5 V, which corresponds to half of the supply voltage for the XMC™ controller used. The 
differential gain (Ki) is adjusted to consider not only inductor average current but also the switching frequency 

ripple, since this signal is used for CCM average current control and peak current limitation (PCL). 

In the totem pole operation the return path transistors (HS_SR and LS_SR on Figure 16) are switched at the AC 

zero crossing according to the AC polarity: HS_SR for positive AC and LS_SR for negative AC cycle. The polarity 

of the input voltage is set according to the control reference GND_iso. Since the control reference is in one of 
the AC input rails, the polarity detection is significantly simplified and the internal ESD (electrostatic discharge) 
diode protection of the XMC™ controller is used to transform the input capacitor voltage into a digital signal. 

Due to the control reference location, the bulk voltage sense requires a differential amplifier with gain KDC, as 
shown in Figure 16. In the case of the of AC voltage sense, the control reference location allows a simple sense. 
In this case, the voltage has been rectified (positive ADC input is required) and adapted to the ADC input range 

with a differential gain KAC. 

Since the AC voltage is used for the current reference generation in the selected average current mode 

structure (Figure 17), the current reference is a full-wave rectified sinusoidal sequence. However, the current 
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sense after the ADC is a sinusoidal sequence with offset at half of the ADC span. Therefore, the ADC result from 
the current sense requires modification. First the offset is removed and the resulting value is rectified according 

to the AC polarity signal. These two steps, together with extra gain, are implemented by software in the XMC™ 
controller. 

 

Figure 17 Current loop structure with DFF and the required current manipulation 

2.4.2 PWM sequence for bootstrapping 

Due to the bootstrap concept implemented, it is important to properly start the PFC PWM at start-up or after a 

long time without operation, i.e., after a fault has stopped the PWM. This is important not only for the high-
frequency half-bridge, in which a proper PWM sequence guarantees the bootstrap to be charged, and thus the 

proper operation of the pre-charge circuit. It is also important for the low-frequency half-bridge, in which 
bootstrap capacitors are dimensioned to comply with 20 ms hold-up time (at 50 percent of the load). 

Due to the selected control ground, in the AC-line with the shunt resistor, the low-side low-frequency switch 
(LS_SR in Figure 16) is enabled when the potential in node “N” is higher than the one in node “L”. Therefore, at 

start-up or after a long time with no PFC operation, LS_SR must be switched on first. Then the bootstrap for 

HS_SR can be charged and the high-side low-frequency transistor can be switched on when the AC polarity 
changes. The implemented SW considers this circumstance, as shown in Figure 18, where the PFC resumes 

operation after a fault. As can be seen, the PFC resumes operation with soft-start (as in start-up) at the AC zero 

crossing with the mentioned polarity, because the AC voltage probe has node “N” as reference. 
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Figure 18 Resume operation after a fault is detected with the low-side low-frequency switch 

As mentioned above, the bootstrap of the low-frequency half-bridge is designed for a 20 ms hold-up time at 
half-load. This allows the totem pole to resume operation after that time if the high-side switch in the low-

frequency half-bridge needs to be switched on, as shown in Figure 19. This capture also shows how the low-
side switch in the high-frequency half-bridge is switched on first in the sequence, even if it is acting as the boost 

diode for such polarity of the AC voltage. This guarantees that the different bootstrap capacitors will be 

charged and the concept presented in the previous sections would perform as expected. 

The low-side switch in the half-bridge is therefore switched on first for every circumstance in which the PWM 

has been previously stopped (start-up, AC zero crossing, AC lost or after a fault is detected) and it complements 
the previously presented strategy for the low-frequency half-bridge. 
 

 

Figure 19 Low-side in the boost half-bridge is switched on first after the PWM is stopped 

 Inductor Current

 LS Vgs

 LS Vds

 AC Voltage

 Inductor Current AC Voltage

 LS Vgs

 Polarity

 Vac sense
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3 Bridgeless PFC specification and test results 

This chapter shows the specifications, performance and behavior of the 3300 W bridgeless totem pole CCM PFC 
evaluation board implementing the 600 V CoolMOS™ CFD7 presented in this application note. The evaluation 
board EVAL_3K3W_TP_PFC_CC design follows the pre-charge circuit design procedure described in section 2.2. 

Table 1 presents the pre-charge circuit design when two IPT60R090CFD7 CoolMOS™ are used in parallel at 
thePFC totem pole. Table 2 shows the evaluation board performance and specifications under several steady-
state and dynamic conditions. The converter operates at 65 kHz switching frequency and only for high-line AC 
input (176 V minimum RMS voltage). 

Table 2 Summary of specifications and test conditions for the 3300 W totem pole in CCM with 
CoolMOS™ CFD7 

Test Conditions Specification 

Efficiency test 230 Vrms, 50 Hz/60 Hz ηpk ≈ 99% at 1650 W (50% load) 

Current THD 230 Vrms, 50 Hz/60 Hz THDi less than 10% from 10% load 

Power factor 230 Vrms, 50 Hz/60 Hz PF more than 0.95 from 20% load 

Rated DC voltage  400 V 

Steady-state Vout ripple 230 Vrms, 50 Hz/60 Hz, 100% load |∆Vout| less than 20 Vpk-pk 

Inrush current 230 Vrms, 50 Hz/60 Hz, measured 

on the first AC cycle 

Iin_peak less than 30 A 

Power line 

disturbance 

AC lost 
(hold-up 

time) 

230 Vrms, 50 Hz, 10 ms at 100% 

load, 20 ms at 50% load 
Vout_min = 300 V (UVP) No damage: 

* PFC soft-start if 

bulk voltage under 

300 V 

* PFC soft-start if 

AC out of range for 

certain time 

Voltage 

sag 

200 Vrms, 50 Hz/60 Hz, different sag 

conditions, 100% load 

Brown-out AC 

voltage 

 
174 V on; 168 V off 

Load transient 8.2 A (100%)  0 A (0%), 0.2 A/µs Vout_min = 300 V (UVP) 

Vout_max = 450 V (OVP) 

Overcurrent protection 

(OCP) 

 Peak current limit 40 A 

AVG current limit 28 A 

3.1 Steady-state performance 

Figure 20 shows the efficiency measurements for PFC operation at different AC voltages. The efficiency 
measurements have been obtained with a WT3000 power analyzer and include the bias consumption as well as 
the fan, which is supplied through the 6 W bias converter. 
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Figure 20 Measured efficiency at different RMS voltages. The measurements include bias and fan 

consumption. 

Figure 21 depicts the total harmonic distortion (THD) and power factor measured at different AC voltages at 
50 Hz. Only 50 Hz results are shown because the high-line AC voltage typically operates at such a frequency. 

However, the EVAL_3K3W_TP_PFC_CC board is prepared to operate at 60 Hz, and similar results can be 
expected. 
 

 

Figure 21 Measured THD (left) and power factor (right) at different RMS voltages for 50 Hz high-line 

AC voltage 

3.2 Totem pole commutation with CoolMOS™ and the pre-charge circuit 

The steady-state operation of the main totem pole PFC with 600 V CoolMOS™ CF7 is shown in Figure 22, which 
also includes the main pre-charging waveforms. As can be seen, there are neither overshoots in the LV switch 

for the pre-charge, nor in the CoolMOS™ CFD7 implemented in the totem pole PFC half-bridge. The pre-
charging voltage, with its bootstrap concept, remains almost constant and allows the implementation shown 
in this document. It must be noted that the pre-charge current appears only in that AC cycle in which the 
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corresponding half-bridge switch is acting as boost diode, and it has no impact on the switching for the 
opposite AC cycle in which the MOSFET implements the boost switch function. The same waveforms are shown 

in Figure 23 for one switching cycle at the peak of the AC voltage. 

 

Figure 22 Steady-state waveforms, including pre-charging, for EVAL_3K3W_TP_PFC_CC at 

230 V/50 Hz AC voltage and full load 

 

 

Figure 23 Switching cycle detail of the steady-state waveforms, including the pre-charging, for 

EVAL_3K3W_TP_PFC_CC at 230 V/50 Hz AC voltage and full load 

The drain-source voltage is shown in Figure 24 and Figure 25 for 0 A and 23 A inductor current respectively. 
The waveforms are captured during PFC steady-state operation at nominal AC voltage and full load, and also 
include the necessary pre-charge current from the LV AC source in order to deplete the 600 V CoolMOS™ CFD7 in 
the totem pole half-bridge. The waveforms shown are in good agreement with the simulation presented in 
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section 2.2, and it is clear that there is no overshoot in the Vds motivated by hard-commutation due to the pre-

charge circuit implemented, which enables hard-commutation operation of CoolMOS™ at switching frequency. 
 

 

Figure 24 Pre-charge current and drain-source voltage of the CoolMOS™ CFD7 operating as a diode 

during totem pole operation and 0 A choke current 

 

 

Figure 25 Pre-charge current and drain-source voltage of the CoolMOS™ CFD7 operating as a diode 

during totem pole operation and 23 A inductor current 

3.3 Power line disturbance 

Two main line disturbance conditions can occur when connected to the grid. On one side the AC can be lost 
during a certain time – line cycle drop-out (LCDO) – and, on the other side, the AC voltage can suddenly 

decrease to an abnormal value – voltage sag. This section introduces the test conditions for both disturbances 
as well as the EVAL_3K3W_TP_PFC_CC bridgeless evaluation board performance when those conditions are 
applied. 
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3.3.1 Line cycle drop-out 

The 3300 W totem pole CCM PFC with 600 V CoolMOS™ CFD7 operates exclusively in high-line. Therefore, the AC 
LCDO capability is tested from 230 V to 0 V. Different timing, related to the specified hold-up time and the line 

frequency, is applied as shown in Table 3. The output voltage is within the specified dynamic variation 
regardless of the start angle of the voltage drop-out. Figure 26 shows an example of LCDO operation at full load 
starting at an AC angle of 45 degrees, which corresponds to the point of lowest DC voltage in steady-state 
conditions. In case the drop-out is longer than specified, output undervoltage (300 V) can be triggered and a 

turn-off and restart of the unit will occur. 

Note: The electronic load used during the test is configured in such a way that it demands current only 
when the voltage applied to the load is over 300 V, which is the undervoltage setting of the 
bridgeless PFC and emulates the typical behavior of a back-end DC-DC converter. 

Table 3 Applied voltage cycles for LCDO test at different loads with 50 Hz AC input voltage 

  First to tenth time 

Applied voltage 230 V AC 0 V AC 230 V AC  

Timing at different load 

conditions 

50% load 20 ms 100 ms 

100% load 10 ms 100 ms 
 

 

Figure 26 10 ms LCDO test at 230 V AC/50 Hz, and 100 percent load with a starting angle of 45 degrees 

More detailed waveforms of a full-load 10 ms LCDO are presented in Figure 27. It shows the PCL when the AC 
returns, set to 40 A, as well as the initial and final bulk voltages during the hold-up time. This high current is 
demanded by the voltage loop in order to quickly increase the bulk voltage to its target value. 

Bulk Voltage
300 V

Inductor current
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Figure 27 Detail of a 10 ms LCDO test at 230 V/50 Hz and full-load with a starting angle of 45 degrees 

3.3.2 Voltage sag 

For high-line, two different voltage sag conditions are considered and tested, as shown in Table 4. 

Table 4 Voltage sag conditions for high-line applied to the EVAL_3K3W_TP_PFC_CC board 

  First to tenth time 

 Steady AC input Voltage sag (time) Period 

AC input 
200 V AC 130 V AC (0.5 s) 5 s 

200 V AC 150 V AC (2 s) 20 s 
 

The EVAL_3K3W_TP_PFC_CC board includes not only PCL, which in this case is motivated by a sudden change 
in the AC voltage, but also average current limitation. This effect can be clearly seen in the voltage sag test 
shown in Figure 28, which shows the totem pole PFC behavior with 130 V voltage sag during 500 ms. Since the 
input current (inductor average current) is limited to 28 A, the output voltage cannot be regulated to 400 V 
during the voltage sag. If the voltage is under the nominal range for longer than specified in the previous table, 

the PFC turns off and restarts with soft-start after an idle time. 

40 A
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Figure 28 Main waveforms during a 500 ms and 130 Vrms voltage sag at full load 

 

3.4 Output voltage dynamic behavior 

In addition to power line disturbance, two other dynamic perturbances can affect the performance of the 

bridgeless totem pole PFC: load steps and input voltage variation. 

3.4.1 Load-transient response 

As specified in Table 2, no-load (0 A) to full-load (8.2 A) steps (and vice-versa) with 0.2 A/µs slope are considered 
for the PFC load variation. Figure 29 shows the EVAL_3K3W_TP_PFC_CC board behavior under these 

conditions, at nominal AC voltage (230 V). 

 

Figure 29 3.3 kW totem pole CCM PFC with CoolMOS™ CFD7 response for full-load to no-load load 

steps every 100 ms with 0.2 A/µs current slope 

28 A

-28 A

40 A

0 A

8.2 A

0.2 A/µs
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The output voltage dynamic range for the specified load variation is between 360 V and 430 V. When the load is 
removed the overshoot is under the overvoltage setting (450 V), and the converter attempts to regulate the 

output voltage under no-load conditions by making the average inductor current close to zero. This is possible 
because negative inductor current is allowed in a totem pole configuration with complementary PWM signals. 

3.4.2 AC voltage variation 

Input voltage variations, as seen in the power line disturbance section, can modify the bulk voltage. This can 
also occur when the input voltage varies even within the normal operation range, as shown in Figure 30. In this 

condition, the bulk voltage is in the range 330 V to 440 V, as shown by the test result. 
 

 

Figure 30 265 V to 180 V line voltage variation at full-load operation 

A sudden increase in the input voltage leads to an immediate increase in the inductor current until the voltage 

loop and the LFF reduce the current demand. Therefore, a sudden change of the AC voltage might lead to PCL, 
as already shown in sections 3.3.1 and 3.3.2. 

3.5 Inrush current and PFC start-up 

Figure 31 shows the start-up of the bridgeless CCM totem pole PFC with CoolMOS™ CFD7 for full-load 

operation. The test has been performed with programmable AC source and HV electronic load. The load is 
configured with a 350 V threshold to start sinking current. This threshold emulates the behavior of the DC-DC 
converter, which would be the load for the PFC. 

The inrush current when connecting to the AC source is limited by an NTC. This resistor is bypassed by a parallel 
relay before start-up if the input and output voltage conditions to start the bridgeless PFC are met. The inrush 

current is measured at the first AC cycle and it is independent of the output load. As shown in Figure 31, the 
inrush current is significantly under the 30 A specified in Table 2. 
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Figure 31 EVAL_3K3W_TP_PFC_CC start-up at full load for 230 V, 50 Hz input voltage 

Relay 

closed
Inrush 

current
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4 Summary 

This document has introduced an Infineon system solution for bridgeless totem pole PFC, which achieves a 
peak efficiency of 99 percent with a 1U form factor and a power density of 80 W/in3. The 
EVAL_3K3W_TP_PFC_CC evaluation board implements Infineon 600 V CoolMOS™ CFD7 MOSFETs and a pre-

charge circuit to enable continuous hard-commutation in CCM operation. This pre-charge circuit significantly 
reduces the losses associated with Qoss and Qrr by providing these charges from a LV source. 

The combination of CoolMOS™ CFD7 and the pre-charge circuit, together with the 600 V CoolMOS™ S7 selected 

for the low-frequency half-bridge, enables high performance (efficiency close to 99 percent) with a very 
attractive price–performance ratio. Furthermore, despite the increase in the number of semiconductors due to 
the pre-charge circuit, the use of SMD packages for all the power semiconductors allows a compact form factor 

(92 W/in3 power density) with proper thermal management. The bridgeless topology implements full digital 

control on the XMC1000 series Infineon microcontroller and does not require extra PWM signals for the pre-
charge circuit. 

This document has shown the design procedure and component selection for the pre-charge circuit, and a 
design tool is embedded to offer the design values for different RDS(on) of the 600 V CoolMOS™ CFD7. This design 
prodecure has been followed for the design of the presented evaluation board, and the experimental results 

and capabilities are shown in this document. 

The performance of the board in PFC operation is not only outstanding in steady-state conditions, offering high 
efficiency and high-quality input current (power factor over 0.95 and THD under 10 percent from 20 percent of 

the load), but it also complies with power line disturbance and hold-up time requirements. 
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5 Bill of materials  

Table 5 Main board components in EVAL_3K3W_TP_PFC_CC 

Designator Value Tolerance Voltage Description 

Q1, Q2 IPT60R022S7  600 V N-channel MOSFET 

Q3, Q4, Q5, Q6 IPT60R090CFD7  600 V N-channel MOSFET 

Q7, Q8 BSZ440N10NS3  100 V N-channel MOSFET 

Q9, Q10 BSS138N  60 V MOSFET 

D10, D11 IDDD08G65C6  650 V Schottky diode 

IC2, IC4, IC5 2EDF7275F   Integrated circuit 

IC3 1EDN8511B   Gate driver IC 

D1, D4, D5, D8, D9 BAT165  40 V Schottky diode 

C1 1 µF X2 20% 305 V AC Foil capacitor  

C4, C5 4.7 nF Y2 300 V Ceramic capacitor  

C6, C11 3.3 µF X2 10% 305 V AC Foil capacitor  

C8 470 µF 20% 16 V Polarized capacitor  

C12, C13, C14, C15, C16, C17, 

C18, C24 10 µF X5R 25 V Ceramic capacitor 

C19, C21, C40 100 nF X7R 630 V Ceramic capacitor 

C20 1 nF X7R 50 V Ceramic capacitor 

C22, C23, C25, C26, C32, C33 10 µF X7R 50 V Ceramic capacitor 

C27, C28, C31 22 nF X7R 50 V Ceramic capacitor 

C29, C30, C34, C35 470 pF CG0 50 V Ceramic capacitor 

C36, C37 820 µF 20% 450 V Electrolytic capacitor  

D2, D3, D6, D7, D14 MURS160BT3G  600 V Standard diode 

D12, D13 DFLS130L-7  30 V Standard diode 

D15, D16 S8KCDICT  800 V Standard diode 

F1 25 A   Fuse 

IC1 VOL617A-3   Integrated circuit 

L1, L2 ICE MG10000842   Common mode choke 

L3 ICE MG30002800   PFC inductor 

L4 Würth 744824101   Common mode choke 

NTC1, NTC2 14 R 25%  NTC inrush resistor 

R1, R2 270 R 1%  Resistor 

R3, R24, R27, R29, R30 0R5 1%  Resistor 

R4 154 R 1%  Resistor 

R5, R6, R7, R8, R9, R10, R11, 
R12, R13, R14, R15, R16, R39, 

R40, R41, R42, R43, R44, R45, 

R46 750 k 0.10%  Resistor 

R17 0 R 1%  Resistor 
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Designator Value Tolerance Voltage Description 

R18, R20, R23, R31, R33 560 R 1%  Resistor 

R19, R21 10 R 1%  Resistor 

R22 R003 1%  Shunt resistor 

R25 43 k 1%  Resistor 

R26, R38, R48 12 k 1%  Resistor 

R32, R37 294 R 1%  Resistor 

R34, R35 187 R 1%  Resistor 

R49 10 k 3%  NTC SMD resistor 

REL1 

G2RL-1A-E2-CV-HA -

DC12  12 V Relay 

X1 
MOD100002740 

KIT_6W_13V_P7_950V  13 V 
Female header, six 

contacts 

X2, X8 Fuse clip   Connector 

X3 
MKDS 5/ 3-6,35 - 

1714955   Connector 

X4 SQW-116-01-L-D   Pin header, 2x16 

X5, X6, X7 1217169   
TE Connectivity AMP 

connectors 

 

Table 6 Control board components in EVAL_3K3W_TP_PFC_CC 

Designator Value Tolerance Voltage Description 

IC3 XMC1402Q040X0064AAXUMA1   

XMC™ 

microcontroller 

C1, C2, C20 330 pF X7R 50 V Ceramic capacitor  

C3, C4, C16, C17, C23 100 pF X7R 50 V Ceramic capacitor 

C5, C6, C7, C11 1 nF X7R 25 V Ceramic capacitor 

C8, C9 1 µF X7R 25 V Ceramic capacitor 

C10, C13, C15, C18, C19, 

C22, C24 100 nF X7R 25 V Ceramic capacitor 

C12, C14, C21 10 µF X5R 6.3 V Ceramic capacitor 

D1 Orange LED   LED 

D2 Green LED   LED 

D3 Bat54S   Diode 

D4 Red LED   LED 

IC1 OPA2376AIDR   Integrated circuit 

IC2 L78L05ACUTR   Integrated circuit 

IC4 TL431B 0.50%  Integrated circuit 

IC5 LMH6642MF   Integrated circuit 

IC6 SN74LVC2G34DBVR   Integrated circuit 
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Designator Value Tolerance Voltage Description 

R1, R2, R17, R19, R25 510 R 1%  Resistor 

R3, R4, R9, R11 37k4 0.10%  Resistor 

R5, R6, R7, R10 750 k 0.10%  Resistor 

R8, R13, R15 1k4 1%  Resistor 

R12, R16, R20, R24 1 k 1%  Resistor 

R14 10 R 1%  Resistor 

R18, R21 750 R 0.10%  Resistor 

R22, R23 47 R 0.10%  Resistor 

R26 22 k 1%  Resistor 

X1 TSM-104-01-F-DH-A   
Female header, eight 

contacts 

X2 TMM-116-03-L-D   

Pin header, 2x16 

contacts 

X3 PicoBlade four-pin SMD   
Pin header, five 

contacts 
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6 Schematics 

 

The next pages shows the schematics for the EVAL_3K3W_TP_PFC_CC board. 
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